Note on minimization of quasi M#-convex functions

被引:0
|
作者
Murota, Kazuo [1 ,2 ]
Shioura, Akiyoshi [3 ]
机构
[1] Inst Stat Math, Tokyo 1908562, Japan
[2] Tokyo Metropolitan Univ, Fac Econ & Business Adm, Tokyo 1920397, Japan
[3] Tokyo Inst Technol, Dept Ind Engn & Econ, Tokyo 1528550, Japan
基金
日本学术振兴会;
关键词
Discrete convexity; Quasi convex function; Minimization; SCALING ALGORITHMS;
D O I
10.1007/s13160-023-00633-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of discrete quasi convex functions called semi-strictly quasi M-#-convex functions, we investigate fundamental issues relating to minimization, such as optimality condition by local optimality, minimizer cut property, geodesic property, and proximity property. Emphasis is put on comparisons with (usual) M-#-convex functions. The same optimality condition and a weaker form of the minimizer cut property hold for semi-strictly quasi M-#-convex functions, while geodesic property and proximity property fail.
引用
收藏
页码:857 / 880
页数:24
相关论文
共 50 条