FP-AGL: Filter Pruning With Adaptive Gradient Learning for Accelerating Deep Convolutional Neural Networks

被引:14
|
作者
Kim, Nam Joon [1 ,2 ]
Kim, Hyun [1 ,2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Elect & Informat Engn, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol, Res Ctr Elect & Informat Technol, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Adaptive gradient learning; convolutional neural networks; filter pruning; light-weight technique; taylor expansion; CNN;
D O I
10.1109/TMM.2022.3189496
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Filter pruning is a technique that reduces computational complexity, inference time, and memory footprint by removing unnecessary filters in convolutional neural networks (CNNs) with an acceptable drop in accuracy, consequently accelerating the network. Unlike traditional filter pruning methods utilizing zeroing-out filters, we propose two techniques to achieve the effect of pruning more filters with less performance degradation, inspired by the existing research on centripetal stochastic gradient descent (C-SGD), wherein the filters are removed only when the ones that need to be pruned have the same value. First, to minimize the negative effect of centripetal vectors that gradually make filters come closer to each other, we redesign the vectors by considering the effect of each vector on the loss-function using the Taylor-based method. Second, we propose an adaptive gradient learning (AGL) technique that updates weights while adaptively changing the gradients. Through AGL, performance degradation can be mitigated because some gradients maintain their original direction, and AGL also minimizes the accuracy loss by perfectly converging the filters, which require pruning, to a single point. Finally, we demonstrate the superiority of the proposed method on various datasets and networks. In particular, on the ILSVRC-2012 dataset, our method removed 52.09% FLOPs with a negligible 0.15% top-1 accuracy drop on ResNet-50. As a result, we achieve the most outstanding performance compared to those reported in previous studies in terms of the trade-off between accuracy and computational complexity.
引用
收藏
页码:5279 / 5290
页数:12
相关论文
共 50 条
  • [41] Fpar: filter pruning via attention and rank enhancement for deep convolutional neural networks acceleration
    Chen, Yanming
    Wu, Gang
    Shuai, Mingrui
    Lou, Shubin
    Zhang, Yiwen
    An, Zhulin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2973 - 2985
  • [42] Pruning Ratio Optimization with Layer-Wise Pruning Method for Accelerating Convolutional Neural Networks
    Kamma, Koji
    Inoue, Sarimu
    Wada, Toshikazu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (01) : 161 - 169
  • [43] Holistic Filter Pruning for Efficient Deep Neural Networks
    Enderich, Lukas
    Timm, Fabian
    Burgard, Wolfram
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2595 - 2604
  • [44] A Novel Filter-Level Deep Convolutional Neural Network Pruning Method Based on Deep Reinforcement Learning
    Feng, Yihao
    Huang, Chao
    Wang, Long
    Luo, Xiong
    Li, Qingwen
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [45] Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy
    Fernandes, Francisco E., Jr.
    Yen, Gary G.
    INFORMATION SCIENCES, 2021, 552 : 29 - 47
  • [46] ACCELERATING DISTRIBUTED DEEP LEARNING BY ADAPTIVE GRADIENT QUANTIZATION
    Guo, Jinrong
    Liu, Wantao
    Wang, Wang
    Han, Jizhong
    Li, Ruixuan
    Lu, Yijun
    Hu, Songlin
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1603 - 1607
  • [47] RFPruning: A retraining-free pruning method for accelerating convolutional neural networks
    Wang, Zhenyu
    Xie, Xuemei
    Shi, Guangming
    APPLIED SOFT COMPUTING, 2021, 113
  • [48] Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention
    Tian, Guanzhong
    Sun, Yiran
    Liu, Yuang
    Zeng, Xianfang
    Wang, Mengmeng
    Liu, Yong
    Zhang, Jiangning
    Chen, Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021,
  • [49] FPC: Filter pruning via the contribution of output feature map for deep convolutional neural networks acceleration
    Chen, Yanming
    Wen, Xiang
    Zhang, Yiwen
    He, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [50] Auto-Balanced Filter Pruning for Efficient Convolutional Neural Networks
    Ding, Xiaohan
    Ding, Guiguang
    Han, Jungong
    Tang, Sheng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6797 - 6804