An Improved Convolutional Neural Network for Churn Analysis

被引:0
|
作者
Gopal, Priya [1 ]
Bin MohdNawi, Nazri [1 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Comp Sci & Informat Technol, Parit Raja, Malaysia
关键词
Customer churn analysis; deep learning; variational autoencoder; convolutional neural networks; dimensionality reduction;
D O I
10.14569/IJACSA.2023.0140921
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The significance of customer churn analysis has escalated due to the increasing availability of relevant data and intensifying competition. Researchers and practitioners are focused on enhancing prediction accuracy in modeling approaches, with deep neural networks emerging as appealing due to their robust performance across domains. However, the computational demands surge due to the challenges posed by dimensionality and inherent characteristics of the data. To address these issues, this research proposes a novel hybrid model that strategically integrates Convolutional Neural Networks (CNN) and a modified Variational Autoencoder (VAE). By carefully adjusting the parameters of the VAE to capture the central tendency and range of variation, the study aims to enhance the effectiveness of classifying high-dimensional churn data. The proposed framework's efficacy is evaluated using six benchmark datasets from various domains, with performance metrics encompassing accuracy, f1-score, precision, recall, and response time. Experimental results underscore the prowess of the hybrid technique in effectively handling high-dimensional and imbalanced time series data, thus offering a robust pathway for enhanced churn analysis.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 50 条
  • [21] An Improved Convolutional Neural Network for Recognition of Incipient Faults
    Xing, Jiaqi
    Xu, Jinxue
    IEEE SENSORS JOURNAL, 2022, 22 (16) : 16314 - 16322
  • [22] An Improved Convolutional Neural Network Based on Noise Layer
    Wang, Zhaoyang
    Pan, Shaowei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2021, PT II, 2021, 12816 : 64 - 74
  • [23] Application of Improved Convolutional Neural Network in Text Classification
    Ronghui, Liu
    Xinhong, Wei
    IAENG International Journal of Computer Science, 2022, 49 (03)
  • [24] Fully Convolutional Neural Network for Improved Brain Segmentation
    Khaled, Afifa
    Han, Jian-Jun
    Ghaleb, Taher A.
    Mohamed, Radman
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 2133 - 2146
  • [25] Improved Convolutional Neural Network for Traffic Scene Segmentation
    Xu, Fuliang
    Luo, Yong
    Sun, Chuanlong
    Zhao, Hong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (03): : 2691 - 2708
  • [26] An Improved Convolutional Neural Network Architecture for Image Classification
    Ferreyra-Ramirez, A.
    Aviles-Cruz, C.
    Rodriguez-Martinez, E.
    Villegas-Cortez, J.
    Zuniga-Lopez, A.
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 89 - 101
  • [27] Skin Lesion Segmentation with Improved Convolutional Neural Network
    Şaban Öztürk
    Umut Özkaya
    Journal of Digital Imaging, 2020, 33 : 958 - 970
  • [28] Development of fading channel patch based convolutional neural network models for customer churn prediction
    Gaurav Seema
    International Journal of System Assurance Engineering and Management, 2024, 15 : 391 - 411
  • [29] Development of fading channel patch based convolutional neural network models for customer churn prediction
    Seema
    Gupta, Gaurav
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (01) : 391 - 411
  • [30] Improved Breast Cancer Classification Through Combining Graph Convolutional Network and Convolutional Neural Network
    Zhang, Yu-Dong
    Satapathy, Suresh Chandra
    Guttery, David S.
    Manuel Gorriz, Juan
    Wang, Shui-Hua
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (02)