ENSEMBLE BASED FEATURE EXTRACTION AND DEEP LEARNING CLASSIFICATION MODEL WITH DEPTH VISION

被引:0
|
作者
Sinha, Kumari Priyanka [1 ]
Kumar, Prabhat [2 ]
Ghosh, Rajib [2 ]
机构
[1] Nalanda Coll Engn, Dept Comp Sci & Engn, Chandi Bihar, India
[2] Natl Inst Technol Patna, Dept Comp Sci & Engn, Patna, India
关键词
Human activities; improved LTXOR; BoW; Bi-LSTM; Bi-GRU classi-fier; HUMAN ACTIVITY RECOGNITION; WI-FI; ATTENTION; KNOWLEDGE; NETWORK;
D O I
10.31577/cai2023_4_965
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It remains a challenging task to identify human activities from a video sequence or still image due to factors such as backdrop clutter, fractional occlu-sion, and changes in scale, point of view, appearance, and lighting. Different ap-pliances, as well as video surveillance systems, human-computer interfaces, and robots used to study human behavior, require different activity classification sys-tems. A four-stage framework for recognizing human activities is proposed in the paper. As part of the initial stages of pre-processing, video-to-frame con-version and adaptive histogram equalization (AHE) are performed. Additionally, watershed segmentation is performed and, from the segmented images, local tex-ton XOR patterns (LTXOR), motion boundary scale-invariant feature transforms (MoBSIFT) and bag of visual words (BoW) based features are extracted. The Bidirectional gated recurrent unit (Bi-GRU) and the Bidirectional long short-term memory (Bi-LSTM) classifiers are used to detect human activity. In addition, the combined decisions of the Bi-GRU and Bi-LSTM classifiers are further fused, and their accuracy levels are determined. With this Dempster-Shafer theory (DST) technique, it is more likely that the results obtained from the analysis are ac-curate. Various metrics are used to assess the effectiveness of the deployed ap-proach.
引用
收藏
页码:965 / 992
页数:28
相关论文
共 50 条
  • [21] Ensemble Model with Deep Learning for Melanoma Classification
    Suganthi, N. Mohana
    Arun, M.
    Chitra, A.
    Rajpriya, R.
    Gayathri, B.
    Padmini, B.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1541 - 1545
  • [22] Deep learning and genetic algorithm-based ensemble model for feature selection and classification of breast ultrasound images
    Dar, Mohsin Furkh
    Ganivada, Avatharam
    IMAGE AND VISION COMPUTING, 2024, 146
  • [23] Deep learning and genetic algorithm-based ensemble model for feature selection and classification of breast ultrasound images
    Dar, Mohsin Furkh
    Ganivada, Avatharam
    Image and Vision Computing, 2024, 146
  • [24] Ensemble-Based Deep Learning Model for Network Traffic Classification
    Aouedi, Ons
    Piamrat, Kandaraj
    Parrein, Benoit
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4124 - 4135
  • [25] Stacked ensemble learning for facial gender classification using deep learning based features extraction
    Waris, Fazal
    Da, Feipeng
    Liu, Shanghuan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 11491 - 11513
  • [26] Integrated deep learning and ensemble learning model for deep feature-based wheat disease detection
    Reis, Hatice Catal
    Turk, Veysel
    MICROCHEMICAL JOURNAL, 2024, 197
  • [27] Deep learning-based ensemble model for classification of breast cancer
    Nemade, Varsha
    Pathak, Sunil
    Dubey, Ashutosh Kumar
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2024, 30 (05): : 513 - 527
  • [28] Classification of Pathologies Using a Vision Based Feature Extraction
    Nieto-Hidalgo, Mario
    Manuel Garcia-Chamizo, Juan
    UBIQUITOUS COMPUTING AND AMBIENT INTELLIGENCE, UCAMI 2017, 2017, 10586 : 265 - 274
  • [29] Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning
    Wang, Xue
    Tan, Kun
    Pan, Cen
    Ding, Jianwei
    Liu, Zhaoxian
    Han, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Melanoma Classification Approach with Deep Learning-Based Feature Extraction Models
    dos Santos, Alan R. F.
    Aires, Kelson R. T.
    das C Filho, I. Francisco
    de Sousa, Leonardo P.
    Veras, Rodrigo de M. S.
    Neto, Laurindo de S. B.
    Neto, Antonio L. de M.
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,