GEDI AND SENTINEL-2 INTEGRATION FOR MAPPING COMPLEX WETLANDS

被引:0
|
作者
Adeli, Sarina [1 ]
Quackenbush, Lindi J. [1 ]
Salehi, Bahram [1 ]
Mahdianpari, Masoud [2 ,3 ]
机构
[1] State Univ New York, Dept Environm Resources Engn, Coll Environm Sci & Forestry, Syracuse, NY 13244 USA
[2] Mem Univ Newfoundland, C CORE, St John, NF, Canada
[3] Mem Univ Newfoundland, Dept Elect Engn, St John, NF, Canada
关键词
GEDI; lidar; machine learning; random forest; sentinel-2;
D O I
10.1109/IGARSS52108.2023.10283238
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Wetlands serve critical functions for protecting ecosystems but are declining globally due to anthropogenic activities and environmental change. There are challenges in delineating wetlands that partially cannot be addressed using the integration of optical and SAR data. NASA's global ecosystem dynamics investigation (GEDI) data, forest height products can differentiate wetland types with different heights. However, GEDI data is only available for limited footprints. In this study, we used a random forest regression model to create a canopy height model (CHM) by merging discrete GEDI footprints with Sentinel-2 data. We calculated the R-squared and RMSE using test data (0.81 and 3.48 meters, respectively). Such an investigation might provide the basis for better wetland management.
引用
收藏
页码:5635 / 5637
页数:3
相关论文
共 50 条
  • [31] Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping
    Moharrami, Meysam
    Attarchi, Sara
    Gloaguen, Richard
    Alavipanah, Seyed Kazem
    REMOTE SENSING, 2024, 16 (09)
  • [32] Semantic Segmentation of China's Coastal Wetlands Based on Sentinel-2 and Segformer
    Lin, Xufeng
    Cheng, Youwei
    Chen, Gong
    Chen, Wenjing
    Chen, Rong
    Gao, Demin
    Zhang, Yinlong
    Wu, Yongbo
    REMOTE SENSING, 2023, 15 (15)
  • [33] Mapping Shallow Waters of the Baltic Sea with Sentinel-2 Imagery
    Kutser, T.
    Paavel, B.
    Kaljurand, K.
    Ligi, M.
    Randla, M.
    2018 IEEE/OES BALTIC INTERNATIONAL SYMPOSIUM (BALTIC), 2018,
  • [34] Automatic Mapping of Rice Growth Stages Using the Integration of SENTINEL-2, MOD13Q1, and SENTINEL-1
    Ramadhani, Fadhlullah
    Pullanagari, Reddy
    Kereszturi, Gabor
    Procter, Jonathan
    REMOTE SENSING, 2020, 12 (21) : 1 - 21
  • [35] Evaluation of Sentinel-2 Data for Automatic Maasai Boma Mapping
    Cheng, Keli
    Bajkowski, Trevor M.
    Scott, Grant J.
    2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,
  • [36] Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery
    Chen, Na
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (01)
  • [37] High resolution wheat yield mapping using Sentinel-2
    Hunt, Merryn L.
    Blackburn, George Alan
    Carrasco, Luis
    Redhead, John W.
    Rowland, Clare S.
    REMOTE SENSING OF ENVIRONMENT, 2019, 233
  • [38] Sentinel-2 Data for Land Cover/Use Mapping: A Review
    Phiri, Darius
    Simwanda, Matamyo
    Salekin, Serajis
    Nyirenda, Vincent R.
    Murayama, Yuji
    Ranagalage, Manjula
    REMOTE SENSING, 2020, 12 (14)
  • [39] Automatized Sentinel-2 mosaicking for large area forest mapping
    Pitkanen, Timo P.
    Balazs, Andras
    Tuominen, Sakari
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 127
  • [40] Mapping Roads in the Brazilian Amazon with Artificial Intelligence and Sentinel-2
    Botelho Jr, Jonas
    Costa, Stefany C. P.
    Ribeiro, Julia G.
    Souza Jr, Carlos M.
    REMOTE SENSING, 2022, 14 (15)