Prediction of Compressive Strength of Biomass-Humic Acid Limonite Pellets Using Artificial Neural Network Model

被引:4
|
作者
Yan, Haoli [1 ]
Zhou, Xiaolei [1 ]
Gao, Lei [1 ]
Fang, Haoyu [1 ]
Wang, Yunpeng [1 ]
Ji, Haohang [1 ]
Liu, Shangrui [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
关键词
neural network; limonite; pelletizing; compressive strength; organic binder; BENTONITE;
D O I
10.3390/ma16145184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the detrimental impact of steel industry emissions on the environment, countries worldwide prioritize green development. Replacing sintered iron ore with pellets holds promise for emission reduction and environmental protection. As high-grade iron ore resources decline, research on limonite pellet technology becomes crucial. However, pellets undergo rigorous mechanical actions during production and use. This study prepared a series of limonite pellet samples with varying ratios and measured their compressive strength. The influence of humic acid on the compressive strength of green and indurated pellets was explored. The results indicate that humic acid enhances the strength of green pellets but reduces that of indurated limonite pellets, which exhibit lower compressive strength compared to bentonite-based pellets. Furthermore, artificial neural networks (ANN) predicted the compressive strength of humic acid and bentonite-based pellets, establishing the relationship between input variables (binder content, pellet diameter, and weight) and output response (compressive strength). Integrating pellet technology and machine learning drives limonite pellet advancement, contributing to emission reduction and environmental preservation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Determination of the Compressive Strength of Concrete Using Artificial Neural Network
    Palomino Ojeda, Jose Manuel
    Rosario Bocanegra, Stefano
    Quinones Huatangari, Lenin
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2021, 11 (03) : 204 - 215
  • [22] ESTIMATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK
    Kostic, Srdan
    Vasovic, Dejan
    GRADEVNSKI MATERIJIALI I KONSTRUKCIJE-BUILDING MATERIALS AND STRUCTURES, 2015, 58 (01): : 3 - 16
  • [23] Prediction of the compressive strength of Flyash and GGBS incorporated geopolymer concrete using artificial neural network
    Sharma U.
    Gupta N.
    Verma M.
    Asian Journal of Civil Engineering, 2023, 24 (8) : 2837 - 2850
  • [24] Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network
    Mozumder, Ruhul Amin
    Laskar, Aminul Islam
    COMPUTERS AND GEOTECHNICS, 2015, 69 : 291 - 300
  • [25] Prediction of unconfined compressive strength of cement–lime stabilized soil using artificial neural network
    Kumar A.
    Singh V.
    Singh S.
    Kumar R.
    Bano S.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 2229 - 2246
  • [26] Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models
    Han, In-Ji
    Yuan, Tian-Feng
    Lee, Jin-Young
    Yoon, Young-Soo
    Kim, Joong-Hoon
    MATERIALS, 2019, 12 (22)
  • [27] Prediction of the compressive strength of vacuum processed concretes using artificial neural network and regression techniques
    Erdal, Muersel
    SCIENTIFIC RESEARCH AND ESSAYS, 2009, 4 (10): : 1057 - 1065
  • [28] Prediction of the compressive strength of volcanic tuff mineral additive concrete using artificial neural network
    Ceylan H.
    Arabian Journal of Geosciences, 2021, 14 (21)
  • [29] Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
    Bu, Liangtao
    Du, Guoqiang
    Hou, Qi
    MATERIALS, 2021, 14 (14)
  • [30] Prediction of Compressive Strength of Aerated Lightweight Aggregate Concrete by Artificial Neural Network
    Kim, Yoo Jae
    Hu, Jiong
    Lee, Soon Jae
    Broughton, Benjamin J.
    GREEN POWER, MATERIALS AND MANUFACTURING TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2011, 84-85 : 177 - 182