The exact solutions for the nonlocal Kundu-NLS equation by the inverse scattering transform

被引:5
|
作者
Li, Yan [1 ]
Hu, Beibei [2 ]
Zhang, Ling [2 ]
Li, Jian [1 ]
机构
[1] Shanghai Inst Technol, Dept Math, Shanghai 201418, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou 239000, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nonlocal Kundu-NLS equation; Inverse scattering transform; Exact solutions; Symmetry reduction; NONLINEAR-SCHRODINGER-EQUATION; DARBOUX TRANSFORMATION; SOLITON-SOLUTIONS; RIEMANN;
D O I
10.1016/j.chaos.2024.114603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly investigate soliton solutions for the nonlocal Kundu-nonlinear Schrodinger (KunduNLS) equation by the inverse scattering transform. The inverse scattering transform and scattering data are studied through a symmetry reduction r(x, t) = q*(-x, t). Then we can derive the exact solutions by Gelfand- Levitan-Marchenko (GLM) equation. Specially, the one-soliton, two-soliton solutions and corresponding graphs of the nonlocal Kundu-NLS equation are given.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Exact solutions of Kundu equation with five order stronger nonlinear terms
    Lu, Dianchen
    Liu, Cuilian
    [J]. ICIC 2009: SECOND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTING SCIENCE, VOL 3, PROCEEDINGS: APPLIED MATHEMATICS, SYSTEM MODELLING AND CONTROL, 2009, : 289 - 292
  • [42] Numerical inverse scattering transform for the focusing and defocusing Kundu-Eckhaus equations
    Cui, Shikun
    Wang, Zhen
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2023, 454
  • [44] NONLOCAL SEPARABLE SOLUTIONS OF THE INVERSE SCATTERING PROBLEM
    GHERGHETTA, T
    NAMBU, Y
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (18): : 3163 - 3184
  • [45] EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION
    Zhu, Wenjing
    Xia, Yonghui
    Bai, Yuzhen
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2020, 21 (03): : 197 - 203
  • [46] Demonstration of Inverse Scattering Transform for DNLS Equation
    YANG Chun-Nuan YU Jia-Lu WANG Qu-Quan HUANG Nian-NingDepartment of Physics
    [J]. Communications in Theoretical Physics, 2007, 48 (08) : 299 - 303
  • [47] The Schrodinger equation and a multidimensional inverse scattering transform
    Bernstein, S
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (16-18) : 1343 - 1353
  • [48] Demonstration of inverse scattering transform for DNLS equation
    Yang, Chun-Nuan
    Yu, Jia-Lu
    Wang, Qu-Quan
    Huang, Nian-Ning
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (02) : 299 - 303
  • [49] Nonlocality and the Inverse Scattering Transform for the Pavlov Equation
    Grinevich, P. G.
    Santini, P. M.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2016, 137 (01) : 10 - 27
  • [50] Stochastic exact solutions of the Wick-type stochastic NLS equation
    Li, Yin
    Zhao, Yulin
    Yao, Zheng-an
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 209 - 221