Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges

被引:14
|
作者
Goshisht, Manoj Kumar [1 ]
机构
[1] Univ Wisconsin, Dept Chem Nat & Appl Sci, Green Bay, WI 54311 USA
来源
ACS OMEGA | 2024年 / 9卷 / 09期
关键词
PROTEIN-PROTEIN INTERACTIONS; CHROMATIN ACCESSIBILITY; GENE-EXPRESSION; RNA-SEQ; GOLD NANOPARTICLES; NEURAL-NETWORK; WEB SERVER; CELL; PREDICTION; DNA;
D O I
10.1021/acsomega.3c05913
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.
引用
收藏
页码:9921 / 9945
页数:25
相关论文
共 50 条
  • [41] Machine Learning in Oncology: Methods, Applications, and Challenges
    Bertsimas, Dimitris
    Wiberg, Holly
    JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 885 - 894
  • [42] Machine learning in manufacturing: advantages, challenges, and applications
    Wuest, Thorsten
    Weimer, Daniel
    Irgens, Christopher
    Thoben, Klaus-Dieter
    PRODUCTION AND MANUFACTURING RESEARCH-AN OPEN ACCESS JOURNAL, 2016, 4 (01): : 23 - 45
  • [43] A review on the applications of machine learning and deep learning to groundwater salinity modeling: present status, challenges, and future directions
    Dilip Kumar Roy
    Tapash Kumar Sarkar
    Tasnia Hossain Munmun
    Chitra Rani Paul
    Bithin Datta
    Discover Water, 5 (1):
  • [44] Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities
    Rahman, Anichur
    Debnath, Tanoy
    Kundu, Dipanjali
    Khan, Md. Saikat Islam
    Aishi, Airin Afroj
    Sazzad, Sadia
    Sayduzzaman, Mohammad
    Band, Shahab S.
    AIMS PUBLIC HEALTH, 2024, 11 (01): : 58 - 109
  • [45] Machine Learning and Deep Learning Based Computational Techniques in Automatic Agricultural Diseases Detection: Methodologies, Applications, and Challenges
    Wani, Javaid Ahmad
    Sharma, Sparsh
    Muzamil, Malik
    Ahmed, Suhaib
    Sharma, Surbhi
    Singh, Saurabh
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (01) : 641 - 677
  • [46] Machine Learning and Deep Learning Based Computational Techniques in Automatic Agricultural Diseases Detection: Methodologies, Applications, and Challenges
    Javaid Ahmad Wani
    Sparsh Sharma
    Malik Muzamil
    Suhaib Ahmed
    Surbhi Sharma
    Saurabh Singh
    Archives of Computational Methods in Engineering, 2022, 29 : 641 - 677
  • [47] Domain Specific Architectures, Hardware Acceleration for Machine/Deep Learning
    Solis, Angel, I
    Nava, Patricia
    DISRUPTIVE TECHNOLOGIES IN INFORMATION SCIENCES II, 2019, 11013
  • [48] Performance Analysis of Machine Learning and Deep Learning Architectures for Malaria Detection on Cell Images
    Narayanan, Barath Narayanan
    Ali, Redha
    Hardie, Russell C.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [49] Investigation of Deep Learning architectures and features for Adversarial Machine Learning Attacks in Modulation Classifications
    Aristodemou, Marios
    Lambotharan, Sangarapillai
    Zheng, Gan
    Aristodemou, Leonidas
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [50] Investigating classification performance of hybrid deep learning and machine learning architectures on activity recognition
    Uzunhisarcikli, Esma
    Kavuncuoglu, Erhan
    Ozdemir, Ahmet Turan
    COMPUTATIONAL INTELLIGENCE, 2022, 38 (04) : 1402 - 1449