Convolutional Neural Network for Monkeypox Detection

被引:10
|
作者
Alcala-Rmz, Vanessa [1 ]
Villagrana-Banuelos, Karen E. [1 ]
Celaya-Padilla, Jose M. [1 ]
Galvan-Tejada, Jorge I. [1 ]
Gamboa-Rosales, Hamurabi [1 ]
Galvan-Tejada, Carlos E. [1 ]
机构
[1] Univ Autonoma Zacatecas, Unidad Acad Ingn Elect, Jardin Juarez 147, Zacatecas 98000, Zacatecas, Mexico
关键词
Monkeypox; Machine learning; Convolutional Neural Networks; MiniGoggleNet; Exantematic disease; Diagnosis asisted by computer; ARTIFICIAL-INTELLIGENCE; DIAGNOSIS;
D O I
10.1007/978-3-031-21333-5_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning has been implemented in medical applications, especially in classification models to support diagnosis. In dermatology, it is of great relevance, due to the high difficulty in differentiating between pathologies that are similar, such is the case of its wide application in skin cancer. One of the diseases that has recently become relevant due to a recent outbreak is monkeypox, which is an exanthematic disease; these types of pathologies are very similar if you are not an expert, so diagnostic support would favor their identification, mainly for adequate epidemiological control. Therefore, the objective of this work is use a public database of monkeypox and control group images. These images were preprocessed, divided into 80/20 for training and testing set respectively. Implementing MiniGoggleNet, 6 experiments were carried out, with different number of epoch. The best model was the one of 50 epochs with accuracy of 0.9708, a loss function of 0.1442, an AUC for class 0 of 0.74, AUC for class 1 of 0.74, AUC for micro-average of 0.76 and AUC for macro-average of 0.74.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [21] Detection of Plastics Using Convolutional Neural Network
    Latha, R. S.
    Sreekanth, G. R.
    Amarnath, A. C.
    Abishek, K. K.
    Deepakraj, K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 224 - 227
  • [22] Pedestrian Detection with Deep Convolutional Neural Network
    Chen, Xiaogang
    Wei, Pengxu
    Ke, Wei
    Ye, Qixiang
    Jiao, Jianbin
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT I, 2015, 9008 : 354 - 365
  • [23] Applying Convolutional Neural Network for Malware Detection
    Chen, Chia-Mei
    Wang, Shi-Hao
    Wen, Dan-Wei
    Lai, Gu-Hsin
    Sun, Ming-Kung
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 490 - 494
  • [24] Melanoma Detection Using Convolutional Neural Network
    Zhang, Runyuan
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 75 - 78
  • [25] Edge Detection Using Convolutional Neural Network
    Wang, Ruohui
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 12 - 20
  • [26] Skin Detection Based on Convolutional Neural Network
    Bordjiba, Yamina
    Bencheriet, Chemesse Ennehar
    Mabrek, Zahia
    NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 75 - 85
  • [27] Atrial Fibrillation Detection with Convolutional Neural Network
    Luo, Jingting
    Fu, Canmiao
    Bai, Mengjie
    Zhao, Yong
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 94 - 98
  • [28] Convolutional Neural Network for Saliency Detection in Images
    Misaghi, Hooman
    Moghadam, Reza Askari
    Madani, Kurosh
    2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 17 - 19
  • [29] Efficient Pupil Detection with a Convolutional Neural Network
    Miron, Casian
    Pasarica, Alexandra
    Bozomitu, Radu Gabriel
    Manta, Vasile
    Timofte, Radu
    Ciucu, Radu
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [30] Convolutional neural network for earthquake detection and location
    Perol, Thibaut
    Gharbi, Michael
    Denolle, Marine
    SCIENCE ADVANCES, 2018, 4 (02):