Nonparametric dynamics modeling for underwater vehicles using local adaptive moment estimation Gaussian processes learning

被引:1
|
作者
Zhang, Zhao [1 ]
Ren, Junsheng [1 ]
机构
[1] Dalian Maritime Univ, Naut Dynam Simulat & Control Lab, 1 Linghai Rd, Dalian 116026, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonparametric modeling; AUV dynamics model; Local Gaussian processes learning; Adaptive moment estimation; IDENTIFICATION; PREDICTION; PARAMETERS; DESIGN; AUV;
D O I
10.1007/s11071-024-09314-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates a nonparametric modeling scheme for underwater vehicles to achieve continuous-time dynamics modeling, which is essential for various marine missions, control, and navigation of these vehicles. The proposed scheme addresses the challenges posed by the nonlinearity, strong coupling, and complex structure of underwater vehicles through local adaptive moment estimation Gaussian processes learning. This approach constructs mappings between hydrodynamics and motion states while providing uncertainty estimates of the dynamics model. A local weighted strategy is used to construct local models to localize Gaussian processes learning, and an adaptive moment estimation method is designed using gradients of innovation to tune hyperparameters of Gaussian processes automatically. Moreover, a subspace index is created and updated based on feature distance measures to improve the computational efficiency of Gaussian processes learning in each local model. The developed scheme can perform real-time simulation considering environmental disturbances and is applied to a 6 degree-of-freedom autonomous underwater vehicle. The results demonstrate that this scheme is an effective mathematical modeling tool for underwater vehicles dynamics.
引用
收藏
页码:5229 / 5245
页数:17
相关论文
共 50 条
  • [11] Nonrigid Registration Using Gaussian Processes and Local Likelihood Estimation
    Wiens, Ashton
    Kleiber, William
    Nychka, Douglas
    Barnhart, Katherine R.
    MATHEMATICAL GEOSCIENCES, 2021, 53 (06) : 1319 - 1337
  • [12] Dynamic System Identification of Underwater Vehicles Using Multi-Output Gaussian Processes
    Wilmer Ariza Ramirez
    Juš Kocijan
    Zhi Quan Leong
    Hung Duc Nguyen
    Shantha Gamini Jayasinghe
    International Journal of Automation and Computing, 2021, 18 : 681 - 693
  • [13] Dynamic System Identification of Underwater Vehicles Using Multi-Output Gaussian Processes
    Ramirez, Wilmer Ariza
    Kocijan, Jus
    Leong, Zhi Quan
    Hung Duc Nguyen
    Jayasinghe, Shantha Gamini
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (05) : 681 - 693
  • [14] Position estimation for underwater vehicles using unscented Kalman filter with Gaussian process prediction
    Ramirez, Wilmer Ariza
    Leong, Zhi Quan
    Hung Nguyen
    Jayasinghe, Shantha Gamini
    UNDERWATER TECHNOLOGY, 2019, 36 (02): : 29 - 35
  • [15] Bayesian Nonparametric Adaptive Control of Time-varying Systems using Gaussian Processes
    Chowdhary, Girish
    Kingravi, Hassan A.
    How, Jonathan P.
    Vela, Patricio A.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2655 - 2661
  • [16] Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions
    van der Meulen F.
    Schauer M.
    van Waaij J.
    Statistical Inference for Stochastic Processes, 2018, 21 (3) : 603 - 628
  • [17] Nonparametric Modeling and Prognosis of Condition Monitoring Signals Using Multivariate Gaussian Convolution Processes
    Kontar, Raed
    Zhou, Shiyu
    Sankavaram, Chaitanya
    Du, Xinyu
    Zhang, Yilu
    TECHNOMETRICS, 2018, 60 (04) : 484 - 496
  • [18] Learning Target Dynamics While Tracking Using Gaussian Processes
    Veiback, Clas
    Olofsson, Jonatan
    Lauknes, Tom Rune
    Hendeby, Gustaf
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 2591 - 2602
  • [19] A comparison of two approaches for adaptive sampling of environmental processes using autonomous underwater vehicles
    Cannell, Christopher J.
    Stilwell, Daniel J.
    OCEANS 2005, VOLS 1-3, 2005, : 1514 - 1521
  • [20] Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks
    Xu, Yunfei
    Choi, Jongeun
    SENSORS, 2011, 11 (03) : 3051 - 3066