Experimental study of mechanical properties of 3D braided aramid/carbon fiber composites

被引:1
|
作者
Liang, Junhao [1 ]
Wang, Longyue [1 ]
Liu, Baoqi [1 ]
He, Xinhai [1 ]
Guo, Jinlei [1 ]
Zhang, Ting [1 ]
Li, Xiyi [1 ]
Ma, Yuqin [2 ]
Tian, Wenlong [3 ]
机构
[1] Xian Polytech Univ, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[2] Changan Univ, Sch Construct Machinery, Key Lab Rd Construct Technol & Equipment, MOE, Xian 710064, Peoples R China
[3] Northwestern Polytech Univ, Sch Mech Engn, Xian, Peoples R China
关键词
Three-dimensional braided technology; composites; mechanical property; carbon fiber; hybrid braided;
D O I
10.1080/00405000.2023.2283823
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Fiber-reinforced composites were widely used in aerospace, automotive, and wind energy industries, due to their lightweight, high specific strength and stiffness, design flexibility, and durability. This study prepared hybrid fiber preforms using a three-dimensional braided technique. These preforms made of carbon fiber (CF) and aramid fiber (AF) were reinforced into resin-based (ER) composites by a vacuum infusion process (VIP). Our study focused on evaluating the mechanical properties of these composites under different blend arrangements and ratios, with four blend arrangements including layer-by-layer, half-by-half, bundle-by-bundle, and block-by-block. The results showed that the bending strain of the composites with a 3:1 aramid fiber/carbon fiber yarn ratio (3AF1CF) increased by 105.56% compared to that of CF/ER, and the addition of AF improved the toughness of the composite. The tensile strength and modulus of the composites with a 3:1 carbon fiber/aramid fiber yarn ratio (1AF3CF) were improved by 31.17% and 109.68%, respectively, compared to those of AF/ER, and the bending strength and modulus increased by 106.12% and 115.32%, respectively, and increasing the CF ratio thus significantly improved the mechanical properties of the composites. In addition, in four hybrid arrangements with the same AF/CF ratio, the aramid fiber/carbon fiber yarn ratio of 2:2 (2AF2CF-4) possessed the best mechanical properties, with tensile strength and of 608.36 MPa and 13.8 GPa, and bending strength and modulus of 417.203 MPa and 22.9 GPa, respectively.
引用
收藏
页码:2224 / 2232
页数:9
相关论文
共 50 条
  • [41] Effect of Interfacial Properties on the Thermophysical Properties of 3D Braided Composites: 3D Multiscale Finite Element Study
    Lu, Zixing
    Wang, Chengyu
    Xia, Biao
    Zhou, Yuan
    POLYMER COMPOSITES, 2014, 35 (09) : 1690 - 1700
  • [43] FINITE ELEMENT ANALYSIS OF MECHANICAL PROPERTIES OF 3D AND 5-D TUBULAR BRAIDED COMPOSITES
    Chen, S. S.
    Lv, M. Y.
    Liu, Z. G.
    Fu, L.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2011, 2011, : 306 - 309
  • [44] An experimental study of the fiber hybridization effect on the mechanical performance of the 2D braided tubular composites
    Naniz, M. Afzali
    Johari, M. Safar
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [45] Mechanical analysis of 3D braided and woven composites using fiber-based continuum analysis
    Ahn, Hyunchul
    Yu, Woong-Ryeol
    COMPOSITE STRUCTURES, 2017, 160 : 1105 - 1118
  • [46] Mechanical properties of 3D fiber reinforced C/SiC composites
    Xu, YD
    Cheng, LF
    Zhang, LT
    Yin, HF
    Yin, XW
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 300 (1-2): : 196 - 202
  • [47] Finite Element Analysis of Mechanical Properties of 3D Surface-Core Braided Composites
    Sun, Jin
    Wang, Yu
    Zhou, Guangming
    Wang, Xinwei
    POLYMER COMPOSITES, 2018, 39 (04) : 1076 - 1088
  • [48] An effective multiscale analysis for the mechanical properties of 3D braided composites considering pore defects
    Jianjin Gong
    Zhiqiang Yang
    Runze Huang
    Jian Zhou
    Yizhi Liu
    Acta Mechanica, 2023, 234 : 6629 - 6647
  • [49] Theoretical prediction on the mechanical properties of 3D braided composites using a helix geometry model
    Jiang, Lili
    Zeng, Tao
    Yan, Shi
    Fang, Daining
    COMPOSITE STRUCTURES, 2013, 100 : 511 - 516
  • [50] Finite element analysis of mechanical properties of 3D five-directional braided composites
    Xu, K.
    Xu, X. W.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 487 (1-2): : 499 - 509