Low-velocity multiple impact damage characteristics and numerical simulation of carbon fiber/epoxy composite laminates

被引:6
|
作者
Fang, Lin [1 ]
Chu, Yuji [1 ]
Zhu, Xueli [1 ]
Yu, Mingming [1 ]
Xie, Wang [1 ,2 ]
Ren, Musu [1 ]
Sun, Jinliang [1 ]
机构
[1] Shanghai Univ, Res Ctr Composite Mat, Shanghai, Peoples R China
[2] Shanghai Univ, Res Ctr Composite Mat, Shanghai 200444, Peoples R China
关键词
damage accumulation; low-velocity impact; multiple impacts; numerical simulation; ENERGY; EPOXY;
D O I
10.1002/pc.27936
中图分类号
TB33 [复合材料];
学科分类号
摘要
Low-velocity impact damage is one of the main defects of composite laminates, which seriously affects the bearing capacity and service life of composite laminates. Multiple impact experiments of carbon fiber/epoxy composite laminates were carried out under different impact energies. The finite-element model was established according to the experimental conditions. The impact damage mechanism of laminated plates was studied by means of simulated damage cloud image, water immersion ultrasonic C-scan, and computed tomography. The results showed that the matrix damage occurred mainly during the whole impact process, and the tensile damage of the matrix was dominant. As the number of impacts increased, the impact resistance of composite laminates decreased and the damaged area increased, with the second impact having the greatest influence on the degree of damage to the laminates; multiple impacts with low energy were easy to cause delamination at the top of the laminated plate. With the increase in impact energy, the damage at the bottom of the laminated plate was more serious, and the propagation mode of delamination damage in laminates changed from top-bottom to bottom-up.
引用
收藏
页码:2517 / 2531
页数:15
相关论文
共 50 条
  • [21] Numerical investigation on the interlayer surface strength effects in carbon/epoxy composite laminates subjected to low-velocity impact
    Tang, Xiaojun
    Yin, Pengbo
    Hui, Tianli
    Yu, Wentao
    Yang, Fenglong
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MACHINERY, ELECTRONICS AND CONTROL SIMULATION (MECS 2017), 2017, 138 : 865 - 874
  • [22] Numerical prediction of the low-velocity impact damage and compression after impact strength of composite laminates
    Tan, Wei
    Falzon, Brian G.
    Chiu, Louis N. S.
    Price, Mark
    ADVANCED MATERIALS FOR DEMANDING APPLICATIONS, 2015, 74
  • [23] Numerical investigation of the low-velocity impact damage resistance and tolerance of composite laminates with preloads
    Zhang, Di
    Zhang, Wenxin
    Zhou, Jin
    Zheng, Xitao
    Wang, Jizhen
    Liu, Haibao
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 142
  • [24] NUMERICAL AND EXPERIMENTAL STUDY FOR DAMAGE CHARACTERIZATION OF COMPOSITE LAMINATES SUBJECTED TO LOW-VELOCITY IMPACT
    Du, Jiangtao
    Tie, Ying
    Li, Cheng
    Zhou, Xihui
    MATERIALS PHYSICS AND MECHANICS, 2016, 27 (02): : 195 - 204
  • [25] Numerical analysis of influence factors on low-velocity impact damage of stitched composite laminates
    Mao, Chunjian
    Zhang, Chao
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2020, 27 (12) : 1019 - 1028
  • [26] ANALYSIS OF DAMAGE ZONES IN GRAPHITE EPOXY LAMINATES IN LOW-VELOCITY IMPACT
    BOGDANOVICH, AE
    YARVE, EV
    MECHANICS OF COMPOSITE MATERIALS, 1991, 27 (03) : 270 - 276
  • [27] Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates
    Wang, Shi-Xun
    Wu, Lin-Zhi
    Ma, Li
    MATERIALS & DESIGN, 2010, 31 (01) : 118 - 125
  • [28] Experimental study on low-velocity impact performance of carbon fiber reinforced composite laminates
    Luo, Liang
    Shen, Zhen
    Yang, Shengchun
    Li, Yubin
    Zhang, Zuoguang
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2008, 25 (03): : 20 - 24
  • [29] Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact
    Gu, Xingjin
    Xu, Xiwu
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2012, 29 (01): : 150 - 161
  • [30] A damage mechanics model for low-velocity impact damage analysis of composite laminates
    Li, N.
    Chen, P. H.
    Ye, Q.
    AERONAUTICAL JOURNAL, 2017, 121 (1238): : 515 - 532