Dynamic mechanical properties and σ precipitates strengthening of a NiCrFeCoMo0.2 high-entropy alloy additively manufactured by selective laser melting

被引:12
|
作者
Huang, Yiyu [1 ,2 ]
Li, Wenshu [1 ,2 ]
Liu, Ruoyu [1 ,2 ]
Chen, Haoyu [1 ,2 ]
Wu, Qi [1 ,2 ]
Wei, Shaohong [1 ,3 ]
Liu, Bin [2 ]
Liaw, Peter K. [4 ]
Wang, Bingfeng [1 ,2 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys IHEP, Dongguan Res Dept, Dongguan 523808, Peoples R China
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Selective laser melt; High-entropy alloy; Mechanical properties; Precipitate; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1016/j.jallcom.2023.172244
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamic mechanical properties of the selected laser melting (SLM)-NiCrFeCoMo0.2 high-entropy alloy (HEA) are further improved by controlling the molten pool structure and the generation of sigma-phase precipitation particles. In this study, a split Hopkinson pressure bar (SHPB) was used for testing the dynamical mechanical properties of the quenched SLM-NiCrFeCoMo0.2 HEA specimens. Microstructure and volume fraction of the sigma precipitates were characterized by X-ray diffractometry (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and the small angle neutron scattering (SANS) technique. After heating to 800 degrees C, holding for 8 h and water quenching, the molten pool boundary of the SLM-NiCrFeCoMo0.2 HEA disappear, and the ultimate compressive strength and the impact energy of specimens reach 1970 MPa and of 217.45 MJ.m(-3), respectively. Due to the segregation of Mo elements in the molten-pool boundary of the as-build SLM-NiCrFeCoMo0.2 HEA, more s precipitates tend to form at the residual molten pool boundary of the quenched SLM-NiCrFeCoMo0.2 HEA. The s precipitates play key role in strengthening of the SLM-NiCrFeCoMo0.2 HEA.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Improving mechanical properties of an additively manufactured high-entropy alloy via post thermomechanical treatment
    Zhao, X. J.
    Deng, S.
    Li, J. F.
    Li, C.
    Lei, Y. Z.
    Luo, S. N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [22] Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening
    Li, Ziyong
    Fu, Liming
    Peng, Jian
    Zheng, Han
    Ji, Xinbo
    Sun, Yanle
    Ma, Shuo
    Shan, Aidang
    MATERIALS CHARACTERIZATION, 2020, 159 (159)
  • [23] Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by selective laser melting
    Wu, Yaowen
    Zhao, Xinyi
    Chen, Qiang
    Yang, Can
    Jiang, Mingguang
    Liu, Changyong
    Jia, Zhe
    Chen, Zhangwei
    Yang, Tao
    Liu, Zhiyuan
    VIRTUAL AND PHYSICAL PROTOTYPING, 2022, 17 (03) : 451 - 467
  • [24] Effect of precipitates on dynamic impact damage mechanism of a selective-laser-melted FeCoNiCrMo0.2 high-entropy alloy
    Li, Wenshu
    Huang, Yiyu
    Wu, Qi
    Liu, Bin
    Wang, Bingfeng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 911
  • [25] Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting
    Lan, Liwei
    Wang, Wenxian
    Cui, Zeqin
    Hao, Xiaohu
    Qiu, Dong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 129 : 228 - 239
  • [26] Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting
    Liwei Lan
    Wenxian Wang
    Zeqin Cui
    Xiaohu Hao
    Dong Qiu
    Journal of Materials Science & Technology, 2022, 129 (34) : 228 - 239
  • [27] On the machining of selective laser melting CoCrFeMnNi high-entropy alloy
    Guo, Jiang
    Goh, Minhao
    Zhu, Zhiguang
    Lee, Xiaohua
    Nai, Mui Ling Sharon
    Wei, Jun
    MATERIALS & DESIGN, 2018, 153 : 211 - 220
  • [28] Microstructure, Properties, and Metallurgical Defects of an Equimolar CoCrNi Medium Entropy Alloy Additively Manufactured by Selective Laser Melting
    Pengda Niu
    Ruidi Li
    Kefu Gan
    Tiechui Yuan
    Siyao Xie
    Chao Chen
    Metallurgical and Materials Transactions A, 2021, 52 : 753 - 766
  • [29] Microstructure, Properties, and Metallurgical Defects of an Equimolar CoCrNi Medium Entropy Alloy Additively Manufactured by Selective Laser Melting
    Niu, Pengda
    Li, Ruidi
    Gan, Kefu
    Yuan, Tiechui
    Xie, Siyao
    Chen, Chao
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (02): : 753 - 766
  • [30] Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy
    Melia, Michael A.
    Carroll, Jay D.
    Whetten, Shaun R.
    Esmaeely, Saba N.
    Locke , Jenifer
    White, Emma
    Anderson, Iver
    Chandross, Michael
    Michael, Joseph R.
    Argibay, Nicolas
    Schindelholz, Eric J.
    Kustas, Andrew B.
    ADDITIVE MANUFACTURING, 2019, 29