Value-of-Information Analysis for External Validation of Risk Prediction Models

被引:1
|
作者
Sadatsafavi, Mohsen [1 ]
Lee, Tae Yoon [1 ]
Wynants, Laure [2 ,3 ]
Vickers, Andrew J. [4 ]
Gustafson, Paul [5 ]
机构
[1] Univ British Columbia, Fac Pharmaceut Sci, Resp Evaluat Sci Program, Room 4110,2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
[2] Maastricht Univ, CAPHRI Care & Publ Hlth Res Inst, Dept Epidemiol, Maastricht, Netherlands
[3] Katholieke Univ Leuven, Dept Dev & Regenerat, Leuven, Belgium
[4] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY USA
[5] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
predictive analytics; precision medicine; decision theory; value of information; bayesian statistics;
D O I
10.1177/0272989X231178317
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background A previously developed risk prediction model needs to be validated before being used in a new population. The finite size of the validation sample entails that there is uncertainty around model performance. We apply value-of-information (VoI) methodology to quantify the consequence of uncertainty in terms of net benefit (NB). Methods We define the expected value of perfect information (EVPI) for model validation as the expected loss in NB due to not confidently knowing which of the alternative decisions confers the highest NB. We propose bootstrap-based and asymptotic methods for EVPI computations and conduct simulation studies to compare their performance. In a case study, we use the non-US subsets of a clinical trial as the development sample for predicting mortality after myocardial infarction and calculate the validation EVPI for the US subsample. Results The computation methods generated similar EVPI values in simulation studies. EVPI generally declined with larger samples. In the case study, at the prespecified threshold of 0.02, the best decision with current information would be to use the model, with an incremental NB of 0.0020 over treating all. At this threshold, the EVPI was 0.0005 (relative EVPI = 25%). When scaled to the annual number of heart attacks in the US, the expected NB loss due to uncertainty was equal to 400 true positives or 19,600 false positives, indicating the value of further model validation. Conclusion VoI methods can be applied to the NB calculated during external validation of clinical prediction models. While uncertainty does not directly affect the clinical implications of NB findings, validation EVPI provides an objective perspective to the need for further validation and can be reported alongside NB in external validation studies.
引用
下载
收藏
页码:564 / 575
页数:12
相关论文
共 50 条
  • [41] Value-of-information for model parameter updating through history matching
    Hong, A. J.
    Bratvold, R. B.
    Thomas, P.
    Hanea, R. G.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 165 : 253 - 268
  • [42] A pragmatic value-of-information approach for intruder tracking sensor networks
    Turgut, Damla
    Boeloeni, Ladislau
    2012 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2012,
  • [43] Prediction models need appropriate internal, internal-external, and external validation
    Steyerberg, Ewout W.
    Harrell, Frank E., Jr.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 69 : 245 - 247
  • [44] Accounting for Heterogeneity in Relative Treatment Effects for Use in Cost-Effectiveness Models and Value-of-Information Analyses
    Welton, Nicky J.
    Soares, Marta O.
    Palmer, Stephen
    Ades, Anthony E.
    Harrison, David
    Shankar-Hari, Manu
    Rowan, Kathy M.
    MEDICAL DECISION MAKING, 2015, 35 (05) : 608 - 621
  • [45] Assessing Discriminative Performance at External Validation of Clinical Prediction Models
    Nieboer, Daan
    van der Ploeg, Tjeerd
    Steyerberg, Ewout W.
    PLOS ONE, 2016, 11 (02):
  • [46] External validation of preexisting first trimester preeclampsia prediction models
    Allen, Rebecca E.
    Zamora, Javier
    Arroyo-Manzano, David
    Velauthar, Luxmilar
    Allotey, John
    Thangaratinam, Shakila
    Aquilina, Joseph
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2017, 217 : 119 - 125
  • [47] External Validation of Clinical Prediction Models in Unilateral Primary Aldosteronism
    Sam, Davis
    Kline, Gregory A.
    So, Benny
    Hundemer, Gregory L.
    Pasieka, Janice L.
    Harvey, Adrian
    Chin, Alex
    Przybojewski, Stefan J.
    Caughlin, Cori E.
    Leung, Alexander A.
    AMERICAN JOURNAL OF HYPERTENSION, 2022, 35 (04) : 365 - 373
  • [48] Development and external validation of clinical prediction models for pituitary surgery
    Zanier, Olivier
    Zoli, Matteo
    Staartjes, Victor E.
    Alalfi, Mohammed O.
    Guaraldi, Federica
    Asioli, Sofia
    Rustici, Arianna
    Pasquini, Ernesto
    Faustini-Fustini, Marco
    Erlic, Zoran
    Hugelshofer, Michael
    Voglis, Stefanos
    Regli, Luca
    Mazzatenta, Diego
    Serra, Carlo
    BRAIN AND SPINE, 2023, 3
  • [49] External validation of prediction models for mortality in an incident dialysis population
    Mavrakanas, Thomas A.
    Asfour, Karl
    Vasilevsky, Murray
    Barre, Paul E.
    Alam, Ahsan
    CLINICAL NEPHROLOGY, 2019, 91 (02) : 65 - 71
  • [50] External validation of prediction models for the diagnosis of coronary artery disease
    Altintas, S.
    Joosen, I. A.
    Hunink, M. G. M.
    Nieman, K.
    Nelemans, P. J.
    Wildberger, J. E.
    Crijns, H. J.
    Mingels, A. M. A.
    Das, M.
    Kietselaer, B. L.
    EUROPEAN HEART JOURNAL, 2015, 36 : 804 - 804