CE-SGAN: Classification enhancement semi-supervised generative adversarial network for lithology identification

被引:18
|
作者
Zhao, Fengda [1 ,2 ,3 ]
Yang, Yang [1 ]
Kang, Jingwen [1 ]
Li, Xianshan [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao, Peoples R China
[2] Yanshan Univ, Key Lab Software Engn Hebei Prov, Qinhuangdao, Peoples R China
[3] Xinjiang Univ Sci & Technol, Sch Informat Sci & Engn, Korla, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lithology identification; Generative adversarial networks; Semi-supervised learning; Classification enhancement;
D O I
10.1016/j.geoen.2023.211562
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithology identification, the process of recognizing and distinguishing lithology using specific methods, is a fundamental task in the fields of formation evaluation and reservoir description. However, the lithology identification accuracy of traditional models is insufficient because the distribution of small-sample logging data is usually extremely unbalanced. In this paper, a classification enhancement semi-supervised generative adversarial network (CE-SGAN) model is proposed to mitigate the influence of data imbalance and improve the lithology identification accuracy. Considering the powerful nonlinearity of logging curves, a classification separation architecture is applied to attain an optimal equilibrium between the classifier and the generator. Furthermore, a pseudo-label processing mechanism is designed to enhance classification, which combined with semi-supervised learning. Experiment results on two small sample logging datasets demonstrate that the model provides a considerable improvement in lithology identification. Moreover, it is competitive in data enhancement.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Semi-Supervised Learning Based on Generative Adversarial Network and Its Applied to Lithology Recognition
    Li, Guohe
    Qiao, Yinghan
    Zheng, Yifeng
    Li, Ying
    Wu, Weijiang
    IEEE ACCESS, 2019, 7 : 67428 - 67437
  • [2] Quantum semi-supervised generative adversarial network for enhanced data classification
    Nakaji, Kouhei
    Yamamoto, Naoki
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Quantum semi-supervised generative adversarial network for enhanced data classification
    Kouhei Nakaji
    Naoki Yamamoto
    Scientific Reports, 11
  • [4] Semi-supervised convolutional generative adversarial network for hyperspectral image classification
    Xue, Zhixiang
    IET IMAGE PROCESSING, 2020, 14 (04) : 709 - 719
  • [5] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xuezhi Xiang
    Zeting Yu
    Ning Lv
    Xiangdong Kong
    Abdulmotaleb El Saddik
    Neural Processing Letters, 2020, 51 : 1527 - 1540
  • [6] Semi-supervised Image Classification via Attention Mechanism and Generative Adversarial Network
    Xiang, Xuezhi
    Yu, Zeting
    Lv, Ning
    Kong, Xiangdong
    Saddik, Abdulmotaleb Ei
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [7] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Lei Wang
    Yu Sun
    Zheng Wang
    The Visual Computer, 2022, 38 : 2009 - 2021
  • [8] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xiang, Xuezhi
    Yu, Zeting
    Lv, Ning
    Kong, Xiangdong
    El Saddik, Abdulmotaleb
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1527 - 1540
  • [9] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Wang, Lei
    Sun, Yu
    Wang, Zheng
    VISUAL COMPUTER, 2022, 38 (06): : 2009 - 2021
  • [10] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249