Semi-supervised Image Classification via Attention Mechanism and Generative Adversarial Network

被引:2
|
作者
Xiang, Xuezhi [1 ]
Yu, Zeting [1 ]
Lv, Ning [1 ]
Kong, Xiangdong [1 ]
Saddik, Abdulmotaleb Ei [2 ]
机构
[1] Harbin Engn Univ, Sch Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
关键词
Semi-supervised; Image classification; Generative adversarial network; Self-attention;
D O I
10.1117/12.2557747
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Image classification plays a vital role in the field of computer vision. Many existing image classification methods with high accuracy are based on supervised learning, which requires a great number of labeled images. However, the labeling of images requires a lot of human and material resources. In this paper, we focus on semi-supervised image classification, which can build a classifier using a few labeled images and plenty of unlabeled images. We propose an attention-based generative adversarial network (GAN) for semi-supervised image classification, which can capture global dependencies and adaptively extract important information. Furthermore, we apply spectral normalization, which can stabilize the training of attention-based GAN. The experimental results obtained with the CIFAR-10 dataset show that the proposed method is comparable with the state-of-the-art GAN-based semi-supervised image classification methods.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xuezhi Xiang
    Zeting Yu
    Ning Lv
    Xiangdong Kong
    Abdulmotaleb El Saddik
    [J]. Neural Processing Letters, 2020, 51 : 1527 - 1540
  • [2] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xiang, Xuezhi
    Yu, Zeting
    Lv, Ning
    Kong, Xiangdong
    El Saddik, Abdulmotaleb
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1527 - 1540
  • [3] Semi-supervised convolutional generative adversarial network for hyperspectral image classification
    Xue, Zhixiang
    [J]. IET IMAGE PROCESSING, 2020, 14 (04) : 709 - 719
  • [4] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    [J]. Computer Vision and Image Understanding, 2024, 249
  • [5] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Lei Wang
    Yu Sun
    Zheng Wang
    [J]. The Visual Computer, 2022, 38 : 2009 - 2021
  • [6] CCS-GAN: a semi-supervised generative adversarial network for image classification
    Wang, Lei
    Sun, Yu
    Wang, Zheng
    [J]. VISUAL COMPUTER, 2022, 38 (06): : 2009 - 2021
  • [7] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [8] SVGAN: Semi-supervised Generative Adversarial Network for Image Captioning
    Zhang, Yi
    Zeng, Wei
    He, Gangqiang
    Liu, Yueyuan
    [J]. 2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 296 - 299
  • [9] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [10] SEMI-SUPERVISED VARIATIONAL GENERATIVE ADVERSARIAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Hao
    Tao, Chao
    Qi, Ji
    Li, HaiFeng
    Tang, YuQi
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9792 - 9794