Deep Ensemble Learning for Human Activity Recognition UsingWearable Sensors via Filter Activation

被引:29
|
作者
Huang, Wenbo [1 ]
Zhang, Lei [1 ]
Wang, Shuoyuan [1 ]
Wu, Hao [2 ]
Song, Aiguo [3 ]
机构
[1] Nanjing Normal Univ, 2 Xuelin Rd,Qixia St, Nanjing 210023, Jiangsu, Peoples R China
[2] Yunnan Univ, Univ Town East Outer Ring South Rd, Kunming 650500, Yunnan, Peoples R China
[3] Southeast Univ, 2 Sipailou,Sipailou St, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensor; convolutional neural network; human activity recognition; deep learning; filter activation; NETWORKS;
D O I
10.1145/3551486
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
During the past decade, human activity recognition (HAR) using wearable sensors has become a new research hot spot due to its extensive use in various application domains such as healthcare, fitness, smart homes, and eldercare. Deep neural networks, especially convolutional neural networks (CNNs), have gained a lot of attention in HAR scenario. Despite exceptional performance, CNNs with heavy overhead is not the best option for HAR task due to the limitation of computing resource on embedded devices. As far as we know, there are many invalid filters in CNN that contribute very little to output. Simply pruning these invalid filters could effectively accelerateCNNs, but it inevitably hurts performance. In this article, we first propose a novelCNN for HAR that uses filter activation. In comparison with filter pruning that is motivated for efficient consideration, filter activation aims to activate these invalid filters from an accuracy boosting perspective. We perform extensive experiments on several public HAR datasets, namely, UCI-HAR (UCI), OPPORTUNITY (OPPO), UniMiB-SHAR (Uni), PAMAP2 (PAM2), WISDM (WIS), and USC-HAD (USC), which show the superiority of the proposed method against existing state-of-the-art (SOTA) approaches. Ablation studies are conducted to analyze its internal mechanism. Finally, the inference speed and power consumption are evaluated on an embedded Raspberry Pi Model 3 B plus platform.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Transition-aware human activity recognition using an ensemble deep learning framework
    Khan, Saad Irfan
    Dawood, Hussain
    Khan, M. A.
    Issa, Ghassan F.
    Hussain, Amir
    Alnfiai, Mrim M.
    Adnan, Khan Muhammad
    COMPUTERS IN HUMAN BEHAVIOR, 2025, 162
  • [22] Human Activity Recognition via Hybrid Deep Learning Based Model
    Khan, Imran Ullah
    Afzal, Sitara
    Lee, Jong Weon
    SENSORS, 2022, 22 (01)
  • [23] Deep learning for human activity recognition
    Li, Xiaoli
    Zhao, Peilin
    Wu, Min
    Chen, Zhenghua
    Zhang, Le
    Neurocomputing, 2021, 444 : 214 - 216
  • [24] Deep learning for human activity recognition
    Li, Xiaoli
    Zhao, Peilin
    Wu, Min
    Chen, Zhenghua
    Zhang, Le
    NEUROCOMPUTING, 2021, 444 : 214 - 216
  • [25] Analysis of Deep Transfer Learning Using DeepConvLSTM for Human Activity Recognition fromWearable Sensors
    Kalabakov, Stefan
    Gjoreski, Martin
    Gjoreski, Hristijan
    Gams, Matjaz
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (02): : 289 - 296
  • [26] Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review
    Ramanujam, E.
    Perumal, Thinagaran
    Padmavathi, S.
    IEEE SENSORS JOURNAL, 2021, 21 (12) : 13029 - 13040
  • [27] Deep Human Activity Recognition With Localisation of Wearable Sensors
    Lawal, Isah A.
    Bano, Sophia
    IEEE ACCESS, 2020, 8 : 155060 - 155070
  • [28] Deep Human Activity Recognition Using Wearable Sensors
    Lawal, Isah A.
    Bano, Sophia
    12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), 2019, : 45 - 48
  • [29] Deep Ensemble Learning for Human Action Recognition in Still Images
    Yu, Xiangchun
    Zhang, Zhe
    Wu, Lei
    Pang, Wei
    Chen, Hechang
    Yu, Zhezhou
    Li, Bin
    COMPLEXITY, 2020, 2020 (2020)
  • [30] AN EXTRA TREE ENSEMBLE OPTIMIZATION-BASED DEEP LEARNING FRAMEWORK FOR HUMAN ACTIVITY RECOGNITION
    Arya, Monika
    Sastry, Hanumat G.
    Gaidhane, Akhilesh
    Motwani, Anand
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,