Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI

被引:11
|
作者
Lan, Ingrid S. [1 ]
Liu, Ju [2 ,3 ]
Yang, Weiguang [4 ]
Zimmermann, Judith [5 ,6 ]
Ennis, Daniel B. [5 ,7 ]
Marsden, Alison L. [1 ,4 ,8 ]
机构
[1] Stanford Univ, Dept Bioengn, Clark Ctr E1-3 318 Campus Dr, Stanford, CA 94305 USA
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Shenzhen 518055, Guangdong, Peoples R China
[4] Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[6] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[7] Vet Affairs Hlth Care Syst, Div Radiol, Palo Alto, CA 94304 USA
[8] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
Fluid-structure interaction; Pulse wave velocity; Magnetic resonance imaging; Compliant 3D printing; In vitro validation; BLOOD-FLOW; VELOCITY; PHANTOM; MODEL;
D O I
10.1007/s10439-022-03038-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We previously introduced and verified the reduced unified continuum formulation for vascular fluid-structure interaction (FSI) against Womersley's deformable wall theory. Our present work seeks to investigate its performance in a patient-specific aortic setting in which assumptions of idealized geometries and velocity profiles are invalid. Specifically, we leveraged 2D magnetic resonance imaging (MRI) and 4D-flow MRI to extract high-resolution anatomical and hemodynamic information from an in vitro flow circuit embedding a compliant 3D-printed aortic phantom. To accurately reflect experimental conditions, we numerically implemented viscoelastic external tissue support, vascular tissue prestressing, and skew boundary conditions enabling in-plane vascular motion at each inlet and outlet. Validation of our formulation is achieved through close quantitative agreement in pressures, lumen area changes, pulse wave velocity, and early systolic velocities, as well as qualitative agreement in late systolic flow structures. Our validated suite of FSI techniques offers a computationally efficient approach for numerical simulation of vascular hemodynamics. This study is among the first to validate a cardiovascular FSI formulation against an in vitro flow circuit involving a compliant vascular phantom of complex patient-specific anatomy.
引用
收藏
页码:377 / 393
页数:17
相关论文
共 50 条
  • [21] Intracranial aneurysm instability prediction model based on 4D-Flow MRI and HR-MRI
    Peng, Fei
    Xia, Jiaxiang
    Zhang, Fandong
    Lu, Shiyu
    Wang, Hao
    Li, Jiashu
    Liu, Xinmin
    Zhong, Yao
    Guo, Jiahuan
    Duan, Yonghong
    Sui, Binbin
    Ye, Chuyang
    Ju, Yi
    Kang, Shuai
    Yu, Yizhou
    Feng, Xin
    Zhao, Xingquan
    Li, Rui
    Liu, Aihua
    NEUROTHERAPEUTICS, 2025, 22 (01)
  • [22] Pulmonary 4D-flow MRI imaging in landrace pigs under rest and stress
    Faragli, A.
    Huellebrand, M.
    Berendsen, A. J.
    Sola, L. Tirapu
    Lo Muzio, F. P.
    Goetze, C.
    Tanacli, R.
    Doeblin, P.
    Stehning, C.
    Schnackenburg, B.
    van der Vosse, F. N.
    Nagel, E.
    Post, H.
    Hennemuth, A.
    Alogna, A.
    Kelle, Sebastian
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (07): : 1511 - 1524
  • [23] A Systematic Review of 4D-Flow MRI Derived Mitral Regurgitation Quantification Methods
    Fidock, Benjamin
    Barker, Natasha
    Balasubramanian, Nithin
    Archer, Gareth
    Fent, Graham
    Al-Mohammad, Abdullah
    Richardson, James
    O'Toole, Laurence
    Briffa, Norman
    Rothman, Alexander
    van der Geest, Rob
    Hose, Rod
    Wild, James M.
    Swift, Andrew J.
    Garg, Pankaj
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2019, 6
  • [24] Aortic Centerline Extraction in 4D-Flow MRI: Effect of Threshold Selection and Subsampling
    Pisani, Joaquina
    Craiem, Damian
    Mousseaux, Elie
    Casciaro, Mariano E.
    ADVANCES IN BIOENGINEERING AND CLINICAL ENGINEERING, VOL 1, SABI 2023, 2024, 106 : 564 - 571
  • [25] Effects of ageing on aortic hemodynamics measured by 4D-flow MRI: a case series
    Juffermans, Joe F.
    Westenberg, Jos J. M.
    van den Boogaard, Pieter J.
    Lamb, Hildo J.
    EUROPEAN HEART JOURNAL-CASE REPORTS, 2023, 7 (04)
  • [26] Automated mitral valve vortex ring extraction from 4D-flow MRI
    Kraeuter, Corina
    Reiter, Ursula
    Reiter, Clemens
    Nizhnikava, Volha
    Masana, Marc
    Schmidt, Albrecht
    Fuchsjaeger, Michael
    Stollberger, Rudolf
    Reiter, Gert
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (06) : 3396 - 3408
  • [27] Left atrium MRI 4D-flow in atrial fibrillation: association with LA function
    Evin, Morgane
    Callaghan, Fraser M.
    Defrance, Carine
    Grieve, Stuart M.
    De Cesare, Alain
    Cluzel, Philippe
    Redheuil, Alban
    Kachenoura, Nadjia
    2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 5 - 8
  • [28] QUANTITATIVE ASSESSMENT OF ENERGY EFFICIENCY BY 4D-FLOW MRI IN THE EXTRACARDIAC FONTAN CIRCULATION
    Nakamura, Taichi
    Takigiku, Kiyohiro
    Yasukochi, Satoshi
    Takei, Kohta
    Okamura, Toru
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1671 - 1671
  • [29] 4D-FLOW MRI INTRACARDIAC FLOW HEMODYNAMIC PATTERNS CAN PHENOTYPE PULMONARY HYPERTENSION SUBTYPES
    Ross, L. K.
    Barker, A. J.
    Frank, B. S.
    Hunter, K.
    Morgan, G. J.
    Mitchell, M. B.
    Fenster, B. E.
    Schafer, M.
    Ivy, D.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2021, 69 (01) : 193 - 193
  • [30] In-vitro validation of 4D flow MRI measurements with an experimental pulsatile flow model
    David, A.
    Le Touze, D.
    Warin-Fresse, K.
    Paul-Gilloteaux, P.
    Bonnefoy, F.
    Idier, J.
    Moussaoui, S.
    Guerin, P.
    Serfaty, J-M
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (01) : 17 - 23