Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI

被引:11
|
作者
Lan, Ingrid S. [1 ]
Liu, Ju [2 ,3 ]
Yang, Weiguang [4 ]
Zimmermann, Judith [5 ,6 ]
Ennis, Daniel B. [5 ,7 ]
Marsden, Alison L. [1 ,4 ,8 ]
机构
[1] Stanford Univ, Dept Bioengn, Clark Ctr E1-3 318 Campus Dr, Stanford, CA 94305 USA
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Shenzhen 518055, Guangdong, Peoples R China
[4] Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[6] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[7] Vet Affairs Hlth Care Syst, Div Radiol, Palo Alto, CA 94304 USA
[8] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
Fluid-structure interaction; Pulse wave velocity; Magnetic resonance imaging; Compliant 3D printing; In vitro validation; BLOOD-FLOW; VELOCITY; PHANTOM; MODEL;
D O I
10.1007/s10439-022-03038-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We previously introduced and verified the reduced unified continuum formulation for vascular fluid-structure interaction (FSI) against Womersley's deformable wall theory. Our present work seeks to investigate its performance in a patient-specific aortic setting in which assumptions of idealized geometries and velocity profiles are invalid. Specifically, we leveraged 2D magnetic resonance imaging (MRI) and 4D-flow MRI to extract high-resolution anatomical and hemodynamic information from an in vitro flow circuit embedding a compliant 3D-printed aortic phantom. To accurately reflect experimental conditions, we numerically implemented viscoelastic external tissue support, vascular tissue prestressing, and skew boundary conditions enabling in-plane vascular motion at each inlet and outlet. Validation of our formulation is achieved through close quantitative agreement in pressures, lumen area changes, pulse wave velocity, and early systolic velocities, as well as qualitative agreement in late systolic flow structures. Our validated suite of FSI techniques offers a computationally efficient approach for numerical simulation of vascular hemodynamics. This study is among the first to validate a cardiovascular FSI formulation against an in vitro flow circuit involving a compliant vascular phantom of complex patient-specific anatomy.
引用
收藏
页码:377 / 393
页数:17
相关论文
共 50 条
  • [1] Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI
    Ingrid S. Lan
    Ju Liu
    Weiguang Yang
    Judith Zimmermann
    Daniel B. Ennis
    Alison L. Marsden
    Annals of Biomedical Engineering, 2023, 51 : 377 - 393
  • [2] 4D-Flow MRI: Technique and Applications
    Straeter, Alexandra
    Huber, Armin
    Rudolph, Jan
    Berndt, Maria
    Rasper, Michael
    Rummeny, Ernst J.
    Nadjiri, Jonathan
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2018, 190 (11): : 1025 - 1035
  • [3] 4D-Flow MRI: Beyond the Images
    Sergio, Pietro
    Miceli, Antonio
    SEMINARS IN THORACIC AND CARDIOVASCULAR SURGERY, 2020, 32 (01) : 35 - 35
  • [4] Post-stenotic Helical Aortic Flow on 4D-flow MRI
    Yoshihara, Shu
    Terada, Masaki
    Kamiya, Masaki
    Takehara, Yasuo
    INTERNAL MEDICINE, 2015, 54 (13) : 1669 - 1670
  • [5] 4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot
    Hudani, Ashifa
    Ihsan Ali, Safia
    Patton, David
    Myers, Kimberley. A. A.
    Fine, Nowell. M. M.
    White, James. A. A.
    Greenway, Steven
    Garcia, Julio
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [6] Motion-corrected 4D-Flow MRI for neurovascular applications
    Rivera-Rivera, Leonardo A.
    Kecskemeti, Steve
    Jen, Mu-Lan
    Miller, Zachary
    Johnson, Sterling C.
    Eisenmenger, Laura
    Johnson, Kevin M.
    NEUROIMAGE, 2022, 264
  • [7] Spatial Resolution and Velocity Field Improvement of 4D-Flow MRI
    Callaghan, Fraser M.
    Grieve, Stuart M.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (05) : 1959 - 1968
  • [8] Compressed sensing accelerated 4D-flow MRI in the murine aorta
    J Fluckiger
    BD Allen
    K Caldock
    M Markl
    JE Schneider
    Journal of Cardiovascular Magnetic Resonance, 15 (Suppl 1)
  • [9] Flow quantification dependency on background phase correction techniques in 4D-flow MRI
    Callaghan, Fraser M.
    Burkhardt, Barbara
    Geiger, Julia
    Buechel, Emanuela R. Valsangiacomo
    Kellenberger, Christian J.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (06) : 2264 - 2275
  • [10] Hemodynamic assessments of venous pulsatile tinnitus using 4D-flow MRI
    Li, Yunduo
    Chen, Huijun
    He, Le
    Cao, Xiangyu
    Wang, Xianling
    Chen, Shubin
    Li, Rui
    Yuan, Chun
    NEUROLOGY, 2018, 91 (06) : E586 - E593