MAXIMAL INEQUALITIES FOR NORMED DOUBLE SUMS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES WITH APPLICATIONS TO DEGENERATE MEAN CONVERGENCE OF THE MAXIMUM OF NORMED SUMS
被引:1
|
作者:
Rosalsky, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Immokalee, FL USAUniv Florida, Immokalee, FL USA
Rosalsky, Andrew
[1
]
Thanh, Le Van
论文数: 0引用数: 0
h-index: 0
机构:
Vinh Univ, Vinh, VietnamUniv Florida, Immokalee, FL USA
Maximal inequality;
Array of Banach space valued random elements;
Martingale type p Banach space;
Mean convergence of order q;
Double sums;
LARGE NUMBERS;
WEIGHTED SUMS;
DOUBLE ARRAYS;
LAW;
THEOREM;
VALUES;
SURE;
D O I:
10.3934/naco.2024010
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this correspondence, we prove new maximal inequalities for normed double sums of random elements taking values in a real separable martingale type p Banach space. The result is then applied to establish mean convergence theorems for the maximum of normed and suitably centered double sums of Banach space-valued random elements.