MAXIMAL INEQUALITIES FOR NORMED DOUBLE SUMS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES WITH APPLICATIONS TO DEGENERATE MEAN CONVERGENCE OF THE MAXIMUM OF NORMED SUMS

被引:1
|
作者
Rosalsky, Andrew [1 ]
Thanh, Le Van [2 ]
机构
[1] Univ Florida, Immokalee, FL USA
[2] Vinh Univ, Vinh, Vietnam
关键词
Maximal inequality; Array of Banach space valued random elements; Martingale type p Banach space; Mean convergence of order q; Double sums; LARGE NUMBERS; WEIGHTED SUMS; DOUBLE ARRAYS; LAW; THEOREM; VALUES; SURE;
D O I
10.3934/naco.2024010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this correspondence, we prove new maximal inequalities for normed double sums of random elements taking values in a real separable martingale type p Banach space. The result is then applied to establish mean convergence theorems for the maximum of normed and suitably centered double sums of Banach space-valued random elements.
引用
收藏
页数:11
相关论文
共 45 条