Effect of symmetric and asymmetric aluminum arrangements on the low-velocity impact performance of glass fiber-reinforced aluminum laminate (GLARE)

被引:3
|
作者
Zhang, Jipeng [1 ]
Wang, Huadong [1 ]
Wang, Yue [1 ]
Dai, Xiangjun [1 ]
Wang, Peng [2 ,3 ,4 ,5 ]
Fang, Guodong [6 ]
机构
[1] Shandong Univ Technol, Sch Transportat & Vehicle Engn, Zibo 255000, Peoples R China
[2] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo, Peoples R China
[3] Natl Univ Def Technol, Sci & Technol Adv Ceram Fibers & Composites Lab, Changsha, Peoples R China
[4] Shandong Ind Ceram Res & Design Inst Co Ltd, Zibo, Peoples R China
[5] Shandong Univ Technol, Inst Engn Ceram, Zibo, Peoples R China
[6] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
aluminum arrangement; finite element model; GLARE; impact performance; DAMAGE; RESISTANCE; STRENGTH; BEHAVIOR; FAILURE;
D O I
10.1002/pc.27920
中图分类号
TB33 [复合材料];
学科分类号
摘要
Glass fiber-reinforced aluminum laminate (GLARE) possesses superior impact performance than both metal and fiber-reinforced composite. It was found previously that the low-velocity impact (LVI) performance of GLARE is governed by aluminum at different locations. This implies that reasonably rearranging aluminum in GLARE may bring in some improvements if the functions of different aluminum are all fully played. In this view, the effect of aluminum arrangement on the LVI performance of GLARE was investigated by separately comparing eight symmetric and eight asymmetric GLARE. Finite element analysis was adopted due to its advantage in quantitatively capturing the detailed damage parameters, and it was verified by LVI tests under different impact energy. The LVI performance was elucidated from both impact resistance and energy absorption aspects, where the former included the force and damage responses, and the latter involved the energy absorbed ratio and absorption efficiency. Based on the mechanical and damage parameters, impact resistance and energy absorption factors were proposed for comprehensive characterization. It revealed that arranging aluminum symmetrically in GLARE by placing thinner aluminum in the middle is an effective way to improve its LVI performance.
引用
收藏
页码:2286 / 2306
页数:21
相关论文
共 50 条
  • [41] Finite Element and Experimental Study of the Fiber-Reinforced Composite Laminates under Low-Velocity Impact
    Liu Hanyang
    Qiu Xinming
    Zhang Dengyu
    He Yuhuai
    Fan Jinjuan
    ADVANCES IN ENGINEERING PLASTICITY XI, 2013, 535-536 : 505 - +
  • [42] Modeling of Biaxial Compression Behavior of Carbon Fiber-Reinforced Composite after Low-Velocity Impact
    Yang, Bin
    Fu, Kunkun
    Li, Yan
    JOURNAL OF AEROSPACE ENGINEERING, 2022, 35 (03)
  • [43] A comprehensive review of fiber-reinforced polymer-matrix composites under low-velocity impact
    Yang, Yuxin
    Miao, Zhengwei
    Liu, Yuewu
    Tu, Huan
    Wei, Yanpeng
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025,
  • [44] Research on carbon fiber-reinforced plastic bumper beam subjected to low-velocity frontal impact
    Hu, Yefa
    Liu, Can
    Zhang, Jinguang
    Ding, Guoping
    Wu, Qiong
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06): : 1 - 15
  • [45] Compression and low-velocity impact behavior of aluminum syntactic foam
    Castro, G.
    Nutt, S. R.
    Wenchen, X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 578 : 222 - 229
  • [46] Investigation of Concrete Constitutive Models for Ultra-High Performance Fiber-Reinforced Concrete under Low-Velocity Impact
    Saini, Dikshant
    Oppong, Kofi
    Shafei, Behrouz
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2021, 157
  • [47] Low-velocity impact response of Kevlar/epoxy aluminum laminates
    Dindar, Berkant
    Agir, Inan
    Bektas, Numan Behlul
    EMERGING MATERIALS RESEARCH, 2021, 10 (03) : 295 - 299
  • [48] Low-velocity impact performance of composite-aluminum tubes prepared by mesoscopic hybridization
    Yang, Haiyang
    Guo, Xiaogang
    Wang, Huiping
    Qu, Jia
    Ma, Yunlong
    Lei, Hongshuai
    Chen, Haosen
    COMPOSITE STRUCTURES, 2021, 274 (274)
  • [49] Low-velocity impact response of high-performance aluminum foam sandwich structures
    Kiratisaevee, H
    Cantwell, WJ
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2005, 24 (10) : 1057 - 1072
  • [50] Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp
    Han, Qigang
    Li, Hongmeng
    Chen, Xinhui
    Shi, Shaoqian
    Shao, Ruowei
    Li, Bo
    Han, Zhiwu
    COMPOSITE STRUCTURES, 2022, 291