Using a combination of industrial and agricultural wastes to manufacture sustainable ultra-high-performance concrete

被引:55
|
作者
Hakeem, Ibrahim Y. [1 ]
Amin, Mohamed [2 ,3 ]
Agwa, Ibrahim Saad [2 ,4 ]
Abd-Elrahman, Mahmoud H. [4 ]
Abdelmagied, Mohammad Farouk [5 ]
机构
[1] Najran Univ, Coll Engn, Dept Civil Engn, Najran, Saudi Arabia
[2] Suez Univ, Fac Technol & Educ, Civil & Architectural Construct Dept, Suez, Egypt
[3] Mansoura High Inst Engn & Technol, Civil Engn Dept, Mansoura, Egypt
[4] El Arish High Inst Engn & Technol, Dept Civil Engn, Al Arish, North Sinai, Egypt
[5] Benha Univ, Benha Fac Engn, Civil Engn Dept, Banha, Egypt
关键词
Ultra-high performance concrete; Glass particles; Wheat straw ash; Mechanical characteristics; Microstructure; Elevated temperatures; FIBER-REINFORCED CONCRETE; MECHANICAL-PROPERTIES; FINE AGGREGATE; PARTIAL REPLACEMENT; RECYCLED GLASS; STEEL FIBER; CEMENT; ASH; MORTAR; MICROSTRUCTURE;
D O I
10.1016/j.cscm.2023.e02323
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Today, recycling and the use of eco-friendly construction supplies are major concerns for the environment. Concrete is frequently utilized in the engineering and construction sectors. In the past several decades, ultra-high performance concrete (UHPC), characterized by very high mechanical qualities, has emerged as one of the most popular types of concrete. Huge quantities of Ordinary Portland cement (OPC) are often utilized; this increases the price of UHPC, limits its widespread usage in structural applications, produces a substantial quantity of carbon dioxide, and uses a sizable amount of natural resources. It is recommended that other additives be used in lieu of OPC in concrete preparation and that recycled aggregates from a variety of sources be used in place of natural aggregates to make UHPC production more environmentally friendly and economically feasible. This study combines industrial and agricultural waste to create an affordable and sustainable UHPC. For example, glass particles (GP) as a manufacturing byproduct generated by glass waste (GW) are utilized as an alternative for fine aggregate "sand (S)" with substitution ratios of 0 %, 50 %, and 100 %, while wheat straw ash (WSA), as an agricultural byproduct, is utilized as an OPC substitute at varying substitution ratios 0 %, 10 %, 20 %, and 30 %. We conducted and analyzed experiments with 12 mixtures divided into three groups. Several factors are studied, including slump flow, mechanical characteristics, drying shrinkage, high temperature, and microstructural features. Based on the obtained outcomes, boosting the percentage of GP utilized to substitute the S made it more workable. In addition, replacing 20 % of the OPC with WSA and 0 % of the S with GP yielded the best results in terms of mechanical characteristics. Increasing the WSA replacement rate while fixing GP to S substitution level significantly reduced drying shrinkage values. Lastly, the compressive strength (fc) findings of UHPC structural components exposed to elevated temperatures up to 200 degrees C were enhanced using GP as a replacement for S. In brief, the results of this experimental investigation can contribute well to illustrating the effect of utilizing GP and WSA to manufacture sustainable ultra-highperformance concrete.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal design and characteristics of sustainable eco-friendly ultra-high-performance concrete
    Asmaa A. Mashaly
    Mohamed G. Mahdy
    Walid E. Elemam
    Innovative Infrastructure Solutions, 2023, 8
  • [22] Development of ultra-high-performance concrete using glass powder - Towards ecofriendly concrete
    Soliman, N. A.
    Tagnit-Hamou, A.
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 125 : 600 - 612
  • [23] Environmental and economic performance of alternative ultra-high-performance concrete
    Silvestre, Jose D.
    Fontoura, Julia F.
    STRUCTURAL CONCRETE, 2025,
  • [24] IMPACT PERFORMANCE OF LOW CEMENT ULTRA-HIGH-PERFORMANCE CONCRETE
    Azmee, Norzaireen Mohd
    Nuruddin, Muhd Fadhil
    SUSTAINABLE CITY XII, 2017, 223 : 481 - 488
  • [25] Experimental evaluation and microscopic analysis of the sustainable ultra-high-performance concrete after exposure to high temperatures
    Luo, Liang
    Jia, Mingming
    Wang, Hongwei
    Cheng, Xuanhao
    STRUCTURAL CONCRETE, 2025,
  • [26] Thermal Properties of Ultra-High-Performance Concrete: A Review
    Rady, Mahmoud
    Soliman, Ahmed
    PROCEEDINGS OF THE CANADIAN SOCIETY FOR CIVIL ENGINEERING ANNUAL CONFERENCE 2023, VOL 7, CSCE 2023, 2024, 501 : 243 - 251
  • [27] Flexural behavior of hybrid ultra-high-performance concrete
    Danha, L. S.
    Abdul-hussien, Z. A.
    Abduljabbar, M. S.
    Yassin, L. A. G.
    4TH INTERNATIONAL CONFERENCE ON BUILDINGS, CONSTRUCTION AND ENVIRONMENTAL ENGINEERING, 2020, 737
  • [28] Research on Fire Resistance of Ultra-High-Performance Concrete
    Ye, Hao-wen
    Feng, Nai-qian
    Yan Ling-hu
    Ran, Zhi-wei
    Lin, Li-xun
    Qi, Shi-kun
    Dong, Yi
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2012, 2012
  • [29] New development of ultra-high-performance concrete (UHPC)
    Du, Jiang
    Meng, Weina
    Khayat, Kamal H.
    Bao, Yi
    Guo, Pengwei
    Lyu, Zhenghua
    Abu-obeidah, Adi
    Nassif, Hani
    Wang, Hao
    COMPOSITES PART B-ENGINEERING, 2021, 224
  • [30] Statistical Optimization of Ultra-High-Performance Glass Concrete
    Abellan, Joaquin
    Fernandez, Jaime
    Torres, Nancy
    Nunez, Andres
    ACI MATERIALS JOURNAL, 2020, 117 (01) : 243 - 254