Deep Learning-Based Hybrid Precoding for Terahertz Massive MIMO Communication With Beam Squint

被引:10
|
作者
Yuan, Qijiang [1 ,2 ]
Liu, Hui [3 ]
Xu, Mingfeng [3 ]
Wu, Yezeng [1 ,2 ]
Xiao, Lixia [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr 6G Mobile Commun, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
Radio frequency; Precoding; Wideband; Antenna arrays; Estimation error; Channel estimation; Broadband antennas; THz; hybrid precoding; beam squint; massive MIMO; deep learning; SYSTEMS;
D O I
10.1109/LCOMM.2022.3211514
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, a wideband hybrid precoding network (WHPC-Net) based on deep learning is designed for Terahertz (THz) massive multiple input multiple output (MIMO) system in the face of beam squint. Firstly, the channel state information (CSI) is preprocessed by calculating the mean channel covariance matrix (MCCM). Next, the analog precoder can be calculated based on the analog precoding sub-network (APC-Net) using the information of the MCCM. Finally, the digital precoder will be obtained with the aid of the digital precoding subnetwork (DPC-Net), employing the related outputs of the APC-Net and the MCCM. Simulation results show that the proposed WHPC-Net is more robust to the beam squint over the existing traditional hybrid precoders. For the case of imperfect CSI, the proposed WHPC-Net even is capable of achieving a higher sum rate than the full-digital precoder based on singular value decomposition.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [1] Deep Learning-Based Hybrid Precoding for RIS-Aided Broadband Terahertz Communication Systems in the Face of Beam Squint
    Yuan, Qijiang
    Xiao, Lixia
    He, Chunlin
    Xiao, Pei
    Jiang, Tao
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (02) : 303 - 307
  • [2] Deep Learning-Based Robust Precoding for Massive MIMO
    Shi, Junchao
    Wang, Wenjin
    Yi, Xinping
    Gao, Xiqi
    Li, Geoffrey Ye
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (11) : 7429 - 7443
  • [3] Adaptive Beam Splitting-Based Broadband Hybrid Precoding for Terahertz Massive MIMO
    Xu, Lei
    Liu, Yu
    Chang, Jing
    Fang, Hongyu
    Li, Xiaohui
    [J]. SENSORS, 2023, 23 (04)
  • [4] A Deep Learning-based Hybrid Precoding with Attention Mechanism for THz Massive MU-MIMO Systems
    Liu, Zhongyan
    Ke, Huamei
    Zhang, Yinghui
    Zhao, Xin
    Liu, Yang
    Jin, Minglu
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5639 - 5644
  • [5] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    [J]. ENTROPY, 2022, 24 (04)
  • [6] Hybrid Precoding Based on Active Learning for mmWave Massive MIMO Communication Systems
    Nouri, Mahdi
    Behroozi, Hamid
    Bastami, Hamed
    Moradikia, Majid
    Jafarieh, Alireza
    Abdelhadi, Ahmed
    Han, Zhu
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (05) : 3043 - 3058
  • [7] Hybrid Precoding Design for Wideband THz Massive MIMO-OFDM Systems With Beam Squint
    Zhang, Ruizhe
    Hao, Wanming
    Sun, Gangcan
    Yang, Shouyi
    [J]. IEEE SYSTEMS JOURNAL, 2021, 15 (03): : 3925 - 3928
  • [8] Low-complexity unsupervised learning-based hybrid precoding for massive MIMO systems
    Liu, Xiang
    [J]. IET COMMUNICATIONS, 2023, 17 (15) : 1773 - 1779
  • [9] Machine Learning-based Hybrid Precoding with Robust Error for UAV mmWave Massive MIMO
    Ren, Huan
    Li, Lixin
    Xu, Wenjun
    Chen, Wei
    Han, Zhu
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [10] Deep Learning-Based Channel Estimation for Massive MIMO With Hybrid Transceivers
    Gao, Jiabao
    Zhong, Caijun
    Li, Geoffrey Ye
    Zhang, Zhaoyang
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5162 - 5174