Hardy-Leindler type inequalities for multiple integrals on time scales

被引:0
|
作者
Nosheen, Ammara [1 ]
Awan, Khalid Mahmood [1 ]
Khan, Khuram Ali [1 ]
Ahmad, Hijaz [2 ,3 ]
Qadeer, Atia Tul [4 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Near East Univ, Operat Res Ctr Healthcare, Near East Blvd 10, TR-99138 Nicosia Mersin, Turkiye
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2,39, I-00186 Rome, Italy
[4] Univ Lahore, Dept Math & Stat, Sargodha Campus, Sargodha, Pakistan
关键词
Time scales calculus; Hardy type inequalities; induction principle;
D O I
10.1515/ms-2023-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hardy-Leindler type inequalities and their converses for multiple integrals on time scales are proved by using Fubini's theorem and induction principle. Some generalized versions of Hardy, Wirtinger and Leindler inequalities in both continuous and discrete cases are also derived in seek of applications.
引用
收藏
页码:353 / 368
页数:16
相关论文
共 50 条
  • [21] Weighted Hardy-Type Inequalities on Time Scales with Applications
    S. H. Saker
    R. R. Mahmoud
    A. Peterson
    Mediterranean Journal of Mathematics, 2016, 13 : 585 - 606
  • [22] TIME SCALES HARDY-TYPE INEQUALITIES VIA SUPERQUADRACITY
    Oguntuase, James Adedayo
    Persson, Lars-Erik
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (02): : 61 - 73
  • [23] Weighted Hardy-Type Inequalities on Time Scales with Applications
    Saker, S. H.
    Mahmoud, R. R.
    Peterson, A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 585 - 606
  • [24] WEIGHTED CEBYSEV TYPE INEQUALITIES FOR DOUBLE INTEGRALS ON TIME SCALES
    Mobeen, Shakila
    Ashraf, Naheed
    Nosheen, Ammara
    Khan, Khuram Ali
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (02): : 61 - 77
  • [25] Some Ostrowski Type Inequalities for Double Integrals on Time Scales
    Deepak B. Pachpatte
    Acta Applicandae Mathematicae, 2019, 161 : 1 - 11
  • [26] Some Ostrowski Type Inequalities for Double Integrals on Time Scales
    Pachpatte, Deepak B.
    ACTA APPLICANDAE MATHEMATICAE, 2019, 161 (01) : 1 - 11
  • [27] ON NEW OSTROWSKI TYPE INEQUALITIES FOR DOUBLE INTEGRALS ON TIME SCALES
    Liu, Wenjun
    Quoc Anh Ngo
    Chen, Wenbing
    DYNAMIC SYSTEMS AND APPLICATIONS, 2010, 19 (01): : 189 - 198
  • [28] Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Askar, Sameh S.
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2022, 7 (08): : 14099 - 14116
  • [29] Hardy and Littlewood Inequalities on Time Scales
    Saker, S. H.
    O'Regan, Donal
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 527 - 543
  • [30] Hardy and Littlewood Inequalities on Time Scales
    S. H. Saker
    Donal O’Regan
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 527 - 543