The dual tree of a fold map germ from R3 to R4

被引:1
|
作者
Moya-Perez, J. A. [1 ]
Nuno-Ballesteros, J. J. [1 ,2 ]
机构
[1] Univ Valencia, Dept Matemat, Campus Burjassot, Burjassot 46100, Spain
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Dual tree; topological classification; double point curve; TOPOLOGICAL INVARIANTS; ORIENTED; 3-MANIFOLDS; CLASSIFICATION; SURFACES;
D O I
10.1017/prm.2022.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f : (R-3,0) -> (R-4,0) be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of f with a small enough sphere S-epsilon(3) centred at the origin in R-4. If f is of fold type, we define a tree, that we call dual tree, that contains all the topological information of the link and we prove that in this case it is a complete topological invariant. As an application we give a procedure to obtain normal forms for any topological class of fold type.
引用
收藏
页码:958 / 977
页数:20
相关论文
共 50 条
  • [1] THE GAUSS MAP OF SURFACES IN R3 AND R4
    HOFFMAN, DA
    OSSERMAN, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1985, 50 (JAN) : 27 - 56
  • [2] Dual relations between line congruences in R3 and surfaces in R4
    Craizer, Marcos
    Garcia, Ronaldo
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (02)
  • [3] The Kustaanheimo-Stiefel map, the Hopf fibration and the square root map on R3 and R4
    ElBialy, Mohamed Sami
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) : 631 - 665
  • [4] On the structure of cube tilings of R3 and R4
    Kisielewicz, Andrzej P.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) : 1 - 10
  • [5] RADIAL FOURIER MULTIPLIERS IN R3 AND R4
    Cladek, Laura
    ANALYSIS & PDE, 2018, 11 (02): : 467 - 498
  • [6] AN R4 SPACETIME WITH A CAUCHY SURFACE WHICH IS NOT R3
    NEWMAN, RPAC
    CLARKE, CJS
    CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (01) : 53 - 60
  • [7] MAXIMUM SYMMETRY POINT GROUPS IN R3 AND R4
    BELOV, NV
    KUNTSEVI.TS
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1972, 16 (05): : 887 - &
  • [8] Periodic solutions for differential systems in R3 and R4
    Feddaoui, Amina
    Llibre, Jaume
    Berhail, Chemseddine
    Makhlouf, Amar
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2021, 6 (01) : 373 - 380
  • [9] New Package in Maxima to Build Axonometric Projections from R4 to R3 and Visualize Objects Immersed in R4
    Sobrino, Emanuel E.
    Ipanaque, Robert
    Velezmoro, Ricardo
    Mechato, Josel A.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT VII, 2020, 12255 : 837 - 851
  • [10] The doodle of a finitely determined map germ from R2 to R3
    Marar, W. L.
    Nuno-Ballesteros, J. J.
    ADVANCES IN MATHEMATICS, 2009, 221 (04) : 1281 - 1301