High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries

被引:29
|
作者
Wang, Bing [1 ,2 ,3 ]
Ma, Jun [1 ,2 ,3 ]
Wang, Kejian [1 ,2 ,3 ]
Wang, Dekai [1 ,2 ,3 ]
Xu, Gaojie [1 ,2 ,3 ]
Wang, Xiaogang [1 ,2 ,3 ]
Hu, Zhiwei [4 ]
Pao, Chih-Wen [5 ]
Chen, Jeng-Lung [5 ]
Du, Li [1 ,2 ,3 ]
Du, Xiaofan [1 ,2 ,3 ]
Cui, Guanglei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Ind Energy Storage Res Inst, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266101, Peoples R China
[3] Qingdao New Energy Shandong Lab, Qingdao 266101, Peoples R China
[4] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[5] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
基金
中国国家自然科学基金;
关键词
cathode materials; high-entropy; O3-type layered oxides; phase evolution; sodium-ion batteries;
D O I
10.1002/aenm.202401090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
O3-type layered oxides are considered as one of the most promising cathode materials for rechargeable sodium-ion batteries (SIBs) due to their appealing energy density and feasible synthesis. Nevertheless, it undergoes complicated phase transitions and pronounced structural degradation during the cycling of charge/discharge process, rendering severe volumetric strain and poor cycling performance. Herein, a zero-strain high-entropy NaNi0.2Fe0.2Mn0.35Cu0.05Zn0.1Sn0.1O2 cathode for SIBs is presented by high-entropy phase stabilization engineering. It is verified that this low-nickel cobalt-free high-entropy cathode can deliver a highly reversible phase evolution, zero volumetric strain, and a significantly improved cycling performance in full cells (87% capacity retention after 500 cycles at 3.0 C). Combining X-ray absorption spectra and first-principles calculations, the varied elemental functions in the high-entropy framework are clearly elucidated, namely, Ni/Fe/Cu acts as charge compensators, while Mn/Zn/Sn serve as interlayer slipping inhibitors through enhanced charge localization besides their stable valence states. By addressing the volumetric strain and cycling instability concerns for O3-type cathode materials, this work presents a promising strategy for inhibiting irreversible phase transitions and structural degradation in intercalation electrodes, which significantly boosts the development of commercially feasible cathodes for high-performance SIBs. A zero-strain layered cathode for sodium-ion batteries is presented by high-entropy phase stabilization engineering. By solving the drastic volumetric strain and cycling instability concerns for O3-type cathode materials, this low-nickel cobalt-free high-entropy cathode delivers highly reversible phase transition, zero volumetric strain, and significantly improved cycling stability. image
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Germanium telluride: Layered high-performance anode for sodium-ion batteries
    Sung, Geon-Kyu
    Nam, Ki-Hun
    Choi, Jeong-Hee
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2020, 331
  • [32] Layered-Structured Sodium-Ion Cathode Materials: Advancements through High-Entropy Approaches
    Dong, Yutao
    Zhou, Zihao
    Ma, Yuan
    Zhang, Hehe
    Meng, Fanbo
    Wu, Yuping
    Ma, Yanjiao
    ACS ENERGY LETTERS, 2024, 9 (10): : 5096 - 5119
  • [33] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):
  • [34] Investigation of high-entropy Prussian blue analog as cathode material for aqueous sodium-ion batteries
    Zhao, Xu
    Xing, Zhaohui
    Huang, Chengde
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (42) : 22835 - 22844
  • [35] A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery
    Xiao, Yao
    Zhu, Yon-Fong
    Yao, Hu-Rong
    Wang, Peng-Fei
    Zhang, Xu-Dong
    Li, Hongliang
    Yang, Xinan
    Gu, Lin
    Li, Yong-Chun
    Wang, Tao
    Yin, Ya-Xia
    Guo, Xiao-Dong
    Zhong, Ben-He
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2019, 9 (19)
  • [36] Progress in defect engineering of high-performance Prussian blue analogues as cathode materials for sodium-ion batteries
    Huang, Yifan
    Mu, Wenning
    Bi, Xiaolong
    Hou, Zhigang
    Lei, Xuefei
    Wang, Qing
    Luo, Shaohua
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [37] Tailoring the growth of iron hexacyanoferrates for high-performance cathode of sodium-ion batteries
    Xiang, Jingjing
    Hao, Youchen
    Gao, Yuting
    Ji, Lei
    Wang, Li
    Sun, Guoxing
    Tang, Yuxin
    Zhu, Yaofeng
    Jiang, Yinzhu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 946
  • [38] A high-stability biphasic layered cathode for sodium-ion batteries
    Liang, Yue
    Xu, Hang
    Jiang, Kezhu
    Bian, Jingjing
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2021, 57 (23) : 2891 - 2894
  • [39] High-entropy O3-type cathode enabling low-temperature performance for sodium-ion batteries
    Zeng, Zhiyong
    Abulikemu, Aierxiding
    Zhang, Jingkun
    Peng, Zhaoquan
    Zhang, Yixiao
    Uchimoto, Yoshiharu
    Han, Jie
    Wang, Qin-Chao
    NANO ENERGY, 2024, 128
  • [40] A Ni/Co-free high-entropy layered cathode with suppressed phase transition and near-zero strain for high-voltage sodium-ion batteries
    Wang, Ziqing
    Fang, Lei
    Fu, Xiaoguang
    Zhang, Shengfeng
    Kong, Huabin
    Chen, Hongwei
    Fu, Fang
    CHEMICAL ENGINEERING JOURNAL, 2024, 480