High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries

被引:3
|
作者
Wang, Bing [1 ,2 ,3 ]
Ma, Jun [1 ,2 ,3 ]
Wang, Kejian [1 ,2 ,3 ]
Wang, Dekai [1 ,2 ,3 ]
Xu, Gaojie [1 ,2 ,3 ]
Wang, Xiaogang [1 ,2 ,3 ]
Hu, Zhiwei [4 ]
Pao, Chih-Wen [5 ]
Chen, Jeng-Lung [5 ]
Du, Li [1 ,2 ,3 ]
Du, Xiaofan [1 ,2 ,3 ]
Cui, Guanglei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Ind Energy Storage Res Inst, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266101, Peoples R China
[3] Qingdao New Energy Shandong Lab, Qingdao 266101, Peoples R China
[4] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[5] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
基金
中国国家自然科学基金;
关键词
cathode materials; high-entropy; O3-type layered oxides; phase evolution; sodium-ion batteries;
D O I
10.1002/aenm.202401090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
O3-type layered oxides are considered as one of the most promising cathode materials for rechargeable sodium-ion batteries (SIBs) due to their appealing energy density and feasible synthesis. Nevertheless, it undergoes complicated phase transitions and pronounced structural degradation during the cycling of charge/discharge process, rendering severe volumetric strain and poor cycling performance. Herein, a zero-strain high-entropy NaNi0.2Fe0.2Mn0.35Cu0.05Zn0.1Sn0.1O2 cathode for SIBs is presented by high-entropy phase stabilization engineering. It is verified that this low-nickel cobalt-free high-entropy cathode can deliver a highly reversible phase evolution, zero volumetric strain, and a significantly improved cycling performance in full cells (87% capacity retention after 500 cycles at 3.0 C). Combining X-ray absorption spectra and first-principles calculations, the varied elemental functions in the high-entropy framework are clearly elucidated, namely, Ni/Fe/Cu acts as charge compensators, while Mn/Zn/Sn serve as interlayer slipping inhibitors through enhanced charge localization besides their stable valence states. By addressing the volumetric strain and cycling instability concerns for O3-type cathode materials, this work presents a promising strategy for inhibiting irreversible phase transitions and structural degradation in intercalation electrodes, which significantly boosts the development of commercially feasible cathodes for high-performance SIBs. A zero-strain layered cathode for sodium-ion batteries is presented by high-entropy phase stabilization engineering. By solving the drastic volumetric strain and cycling instability concerns for O3-type cathode materials, this low-nickel cobalt-free high-entropy cathode delivers highly reversible phase transition, zero volumetric strain, and significantly improved cycling stability. image
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries
    Li, Chuanping
    Qiu, Min
    Li, Ruiling
    Li, Xuan
    Wang, Manxi
    He, Jiabo
    Lin, Ganggang
    Xiao, Liren
    Qian, Qingrong
    Chen, Qinghua
    Wu, Junxiong
    Li, Xiaoyan
    Mai, Yiu-Wing
    Chen, Yuming
    ADVANCED FIBER MATERIALS, 2022, 4 (01) : 43 - 65
  • [2] Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries
    Chuanping Li
    Min Qiu
    Ruiling Li
    Xuan Li
    Manxi Wang
    Jiabo He
    Ganggang Lin
    Liren Xiao
    Qingrong Qian
    Qinghua Chen
    Junxiong Wu
    Xiaoyan Li
    Yiu-Wing Mai
    Yuming Chen
    Advanced Fiber Materials, 2022, 4 : 43 - 65
  • [3] High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries
    Li, Ranran
    Qin, Xuan
    Li, Xiaolei
    Zhu, Jianxun
    Zheng, Li-Rong
    Li, Zhongtao
    Zhou, Weidong
    ADVANCED ENERGY MATERIALS, 2024, 14 (26)
  • [4] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [5] Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries
    Mu, Jinxiao
    Cai, Tianxun
    Dong, Wujie
    Zhou, Ce
    Han, Zhen
    Huang, Fuqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [6] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [7] A High-Entropy Intergrowth Layered-Oxide Cathode with Enhanced Stability for Sodium-Ion Batteries
    Pang, Yanfei
    Wang, Yingshuai
    Jiang, Chunyu
    Ding, Xiangyu
    Xin, Yuhang
    Zhou, Qingbo
    Chen, Baorui
    Liu, Hongfeng
    Singh, Preetam
    Wang, Qianchen
    Gao, Hongcai
    CHEMSUSCHEM, 2024,
  • [8] A high-performance layered Cr-Based cathode for sodium-ion batteries
    Xi, Kaiying
    Chu, Shufen
    Zhang, Xiaoyu
    Zhang, Xueping
    Zhang, Haoyang
    Xu, Hang
    Bian, Jingjing
    Fang, Tiancheng
    Guo, Shaohua
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NANO ENERGY, 2020, 67 (67)
  • [9] A Configuration Entropy Enabled High-Performance Polyanionic Cathode for Sodium-Ion Batteries
    Li, Meng
    Sun, Chen
    Yuan, Xuanyi
    Li, Yang
    Yuan, Yifei
    Jin, Haibo
    Lu, Jun
    Zhao, Yongjie
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [10] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Luo, Wen
    Gaumet, Jean-Jacques
    Mai, Liqiang
    MRS COMMUNICATIONS, 2017, 7 (02) : 152 - 165