Automated Quantitative Analysis of CT Perfusion to Classify Vascular Phenotypes of Pancreatic Ductal Adenocarcinoma

被引:2
|
作者
Perik, Tom [1 ]
Alves, Natalia [1 ]
Hermans, John J. [1 ]
Huisman, Henkjan [1 ]
机构
[1] Radboud Univ Nijmegen Med Ctr, Dept Med Imaging, NL-6525 GA Nijmegen, Netherlands
关键词
perfusion imaging; biomarker; pancreatic neoplasms; ENHANCED CT; PARAMETERS; BIOMARKER;
D O I
10.3390/cancers16030577
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
CT perfusion (CTP) analysis is difficult to implement in clinical practice. Therefore, we investigated a novel semi-automated CTP AI biomarker and applied it to identify vascular phenotypes of pancreatic ductal adenocarcinoma (PDAC) and evaluate their association with overall survival (OS). Methods: From January 2018 to November 2022, 107 PDAC patients were prospectively included, who needed to undergo CTP and a diagnostic contrast-enhanced CT (CECT). We developed a semi-automated CTP AI biomarker, through a process that involved deformable image registration, a deep learning segmentation model of tumor and pancreas parenchyma volume, and a trilinear non-parametric CTP curve model to extract the enhancement slope and peak enhancement in segmented tumors and pancreas. The biomarker was validated in terms of its use to predict vascular phenotypes and their association with OS. A receiver operating characteristic (ROC) analysis with five-fold cross-validation was performed. OS was assessed with Kaplan-Meier curves. Differences between phenotypes were tested using the Mann-Whitney U test. Results: The final analysis included 92 patients, in whom 20 tumors (21%) were visually isovascular. The AI biomarker effectively discriminated tumor types, and isovascular tumors showed higher enhancement slopes (2.9 Hounsfield unit HU/s vs. 2.0 HU/s, p < 0.001) and peak enhancement (70 HU vs. 47 HU, p < 0.001); the AUC was 0.86. The AI biomarker's vascular phenotype significantly differed in OS (p < 0.01). Conclusions: The AI biomarker offers a promising tool for robust CTP analysis. In PDAC, it can distinguish vascular phenotypes with significant OS prognostication.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Feasibility of wide detector CT perfusion imaging performed during routine staging and restaging of pancreatic ductal adenocarcinoma
    Ryan B. O’Malley
    Erik V. Soloff
    Andrew L. Coveler
    Danielle H. Cox
    Nitin Desai
    Janet M. Busey
    Greta M. Valentin
    Carolyn L. Wang
    Abdominal Radiology, 2021, 46 : 1992 - 2002
  • [32] Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma
    Pistoni, Laura
    Gentiluomo, Manuel
    Lu, Ye
    de Maturana, Evangelina Lopez
    Hlavac, Viktor
    Vanella, Giuseppe
    Darvasi, Erika
    Milanetto, Anna Caterina
    Oliverius, Martin
    Vashist, Yogesh
    Di Leo, Milena
    Mohelnikova-Duchonova, Beatrice
    Talar-Wojnarowska, Renata
    Gheorghe, Cristian
    Petrone, Maria Chiara
    Strobel, Oliver
    Arcidiacono, Paolo Giorgio
    Vodickova, Ludmila
    Szentesi, Andrea
    Capurso, Gabriele
    Gajdan, Laszlo
    Malleo, Giuseppe
    Theodoropoulos, George E.
    Basso, Daniela
    Soucek, Pavel
    Brenner, Hermann
    Lawlor, Rita T.
    Morelli, Luca
    Ivanauskas, Audrius
    Kauffmann, Emanuele Federico
    Macauda, Angelica
    Gazouli, Maria
    Archibugi, Livia
    Nentwich, Michael
    Cavestro, Giulia Martina
    Vodicka, Pavel
    Landi, Stefano
    Tavano, Francesca
    Sperti, Cosimo
    Hackert, Thilo
    Kupcinskas, Juozas
    Pezzilli, Raffaele
    Andriulli, Angelo
    Pollina, Luca
    Kreivenaite, Edita
    Gioffreda, Domenica
    Jamroziak, Krzysztof
    Hegyi, Peter
    Izbicki, Jakob R.
    Testoni, Sabrina Gloria Giulia
    CARCINOGENESIS, 2021, 42 (08) : 1037 - 1045
  • [33] Proteogenomic analysis of human pancreatic ductal adenocarcinoma
    Baek, Sung Hee
    Rodland, Karin
    NATURE CANCER, 2023, 4 (02) : 163 - 164
  • [34] Liver metastases in pancreatic ductal adenocarcinoma: a predictive model based on CT texture analysis
    De Robertis, Riccardo
    Geraci, Luca
    Tomaiuolo, Luisa
    Bortoli, Luca
    Beleu, Alessandro
    Malleo, Giuseppe
    D'Onofrio, Mirko
    RADIOLOGIA MEDICA, 2022, 127 (10): : 1079 - 1084
  • [35] Clinicopathologic Analysis of Cystic Ductal Adenocarcinoma of Pancreas - Neglected Variant of Pancreatic Ductal Adenocarcinoma
    Park, H. J.
    Kim, J. Y.
    Jang, K. T.
    MODERN PATHOLOGY, 2010, 23 : 368A - 368A
  • [36] Genomic analysis of metachronous pancreatic ductal adenocarcinoma
    Connor, Ashton A.
    Chan-Seng-Yue, Michelle
    Denroche, Robert E.
    Borgida, Ayelet
    Liang, Sheng-Ben
    Notta, Faiyaz
    Stein, Lincoln
    Roehrl, Michael H.
    McPherson, John
    Gallinger, Steven
    CANCER RESEARCH, 2015, 75 (22)
  • [38] Liver metastases in pancreatic ductal adenocarcinoma: a predictive model based on CT texture analysis
    Riccardo De Robertis
    Luca Geraci
    Luisa Tomaiuolo
    Luca Bortoli
    Alessandro Beleù
    Giuseppe Malleo
    Mirko D’Onofrio
    La radiologia medica, 2022, 127 : 1079 - 1084
  • [39] Clinicopathologic Analysis of Cystic Ductal Adenocarcinoma of Pancreas - Neglected Variant of Pancreatic Ductal Adenocarcinoma
    Park, H. J.
    Kim, J. Y.
    Jang, K. T.
    LABORATORY INVESTIGATION, 2010, 90 : 368A - 368A
  • [40] Characterization of undiagnosed pancreatic ductal adenocarcinoma on CT scans.
    Chang, John
    Bartels, Madelyn
    Beyer, Kelsey
    Maitland, Ashley
    Peterson, Richard Taft
    Goldinger, Stephen
    Papesh, Megan
    Kundranda, Maddapa
    Koo, Phillip
    Dragovich, Tomislav
    Choti, Michael A.
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (03)