Defining, Measuring, and Evaluating Prenatal Care in Insurance Claims Data

被引:0
|
作者
Simmons, Elizabeth [1 ,2 ]
Dissanayake, Mekhala V. [2 ,3 ]
Kahrs, Jacob C. [3 ]
Latour, Chase D. [3 ,4 ]
Olawore, Oluwasolape [3 ]
Kucirka, Lauren M. [5 ]
Wood, Mollie E. [3 ]
机构
[1] Univ North Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Dept Maternal & Child Hlth, Chapel Hill, NC USA
[2] Univ North Carolina Chapel Hill, Carolina Populat Ctr, Chapel Hill, NC USA
[3] Univ North Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Dept Epidemiol, 135 Dauer Dr,2101 McGavran Greenberg Hall,CB 7435, Chapel Hill, NC 27599 USA
[4] Univ North Carolina Chapel Hill, Cecil G Sheps Ctr Hlth Serv Res, Chapel Hill, NC USA
[5] Univ North Carolina Chapel Hill, Sch Med, Dept Obstet & Gynecol, Div Maternal Fetal Med, Chapel Hill, NC USA
基金
美国国家卫生研究院;
关键词
Prenatal care; Insurance claims data; Administrative databases; Pregnancy; Perinatal epidemiology; GESTATIONAL-AGE; SELECTION BIAS; UNITED-STATES; PREGNANCY; HEALTH; BIRTH; MORTALITY; IMPACT;
D O I
10.1007/s40471-023-00341-z
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose of ReviewThe objective of this paper is to discuss the complexities of identifying prenatal care visits in insurance claims databases, review existing methods to identify prenatal care encounters, and explore how different study goals should inform the definition of prenatal care employed by investigators.Recent FindingsInsurance claims data are routinely used to conduct perinatal epidemiology studies focused on the effects of medical interventions. Prenatal care, an important medical intervention and an indicator of ongoing pregnancy, lacks a consistent definition among clinical and research-based sources.SummaryWe have categorized definitions of prenatal care in three groups: all healthcare received while pregnant, pregnancy-specific healthcare, and guideline-concordant healthcare. In studies using insurance claims data, we found five common methods to identify prenatal care encounters. Using example study goals, we outline important considerations investigators must make when applying different methods to identify prenatal care visits in studies using insurance claims data.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [31] DEFINING THROMBOEMBOLIC EVENTS USING ADMINISTRATIVE CLAIMS DATA
    Saunders-Hastings, P.
    Burrell, T.
    Srichaikul, J.
    Dores, G.
    Chada, K.
    Wong, H. L.
    Shoaibi, A.
    VALUE IN HEALTH, 2020, 23 : S101 - S101
  • [32] DEFINING DIABETES MELLITUS USING ADMINISTRATIVE CLAIMS DATA
    Saunders-Hastings, P.
    Burrell, T.
    Srichaikul, J.
    Lee, T.
    Ahima, O.
    Chada, K.
    Wong, H. L.
    Shoaibi, A.
    VALUE IN HEALTH, 2020, 23 : S120 - S120
  • [33] How many hospital insurance claims are based on infection control failures? A data analysis of hospital insurance claims
    Moench, N.
    Breier, A. -C.
    Weitzel-Kage, D.
    Gausmann, P.
    Jaklin, J.
    Gastmeier, P.
    Geffers, C.
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2011, 136 (27) : 1413 - 1416
  • [34] Last year of life care transitions between long-term care insurance services in Japan: Analysis of long-term care insurance claims data
    Kashiwagi, Masayo
    Kashiwagi, Kimikazu
    Morioka, Noriko
    Abe, Kazuhiro
    GERIATRICS & GERONTOLOGY INTERNATIONAL, 2024,
  • [35] Geriatric multimorbidity in claims data - part 1. Analysis of hospital data and long-term care insurance data
    Luebke, N.
    Meinck, M.
    ZEITSCHRIFT FUR GERONTOLOGIE UND GERIATRIE, 2012, 45 (06): : 485 - 496
  • [36] Monitoring and evaluating surgical care: defining perioperative mortality rate and standardising data collection
    Palmqvist, Charlotta L.
    Ariyaratnam, Roshan
    Watters, David A.
    Laing, Grant L.
    Stupart, Douglas
    Hider, Phil
    Ng-Kamstra, Joshua S.
    Wilson, Leona
    Clarke, Damian L.
    Hagander, Lars
    Greenberg, Sarah L. M.
    Gruen, Russell L.
    LANCET, 2015, 385 : 27 - 27
  • [37] EMPIRICAL CLASSIFICATION OF EPILEPSY TYPES IN INSURANCE CLAIMS DATA
    Kurth, T.
    Lewis, B.
    Walker, A.
    VALUE IN HEALTH, 2009, 12 (03) : A197 - A197
  • [39] Identification of Chronic Migraineurs in Health Insurance Claims Data
    Berger, A.
    Corbell, C.
    Moynahan, A. P.
    Messali, A.
    Oster, G.
    Silberstein, S.
    HEADACHE, 2014, 54 : 17 - 17
  • [40] Big Data Science for Predicting Insurance Claims Fraud
    Kenyon, David
    Eloff, J. H. P.
    PROCEEDINGS OF THE 2017 INFORMATION SECURITY FOR SOUTH AFRICA (ISSA) CONFERENCE, 2017, : 40 - 47