Numerical Simulation of Transient Submerged Entry Nozzle Clogging With Euler-Euler and Euler-Lagrange Frameworks

被引:3
|
作者
Liu, Jian-Qiu [1 ]
Liu, Yi-Bo [1 ]
Sun, Qun [2 ]
Lin, Yang [2 ]
Du, Lin [2 ]
Meng, Jin-Song [2 ]
Yang, Jian [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, State Key Lab Adv Special Steel, Shanghai 200444, Peoples R China
[2] Anshan Iron & Steel Grp CO LTD, Anshan 114021, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTINUOUS-CASTING MOLD; PARTICLE DEPOSITION; TUNDISH NOZZLE; PILOT-PLANT; LOW-CARBON; STEEL; FLOW; ALUMINA; MODEL; INCLUSIONS;
D O I
10.1007/s11663-023-02863-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the user-defined function (UDF) is firstly used to couple the porous medium model and the Euler-Euler two-fluid model, and the integrated SEN clogging model including the SEN clogging formation and growth, and liquid steel fluid flow dominated by the deposition of non-metallic inclusion particles is established. The simulation results of the SEN clogging under the Euler-Euler and Euler-Lagrange frameworks are both in good agreement with the measured results. With the increase of the distance from the nozzle inlet, the clogging thickness first increases, then remains stable, and slightly decreases. The clogging at the bottom of the nozzle is most serious and presents a conical shape. The polyhedral mesh is better than that of the hexahedral structure mesh for SEN clogging simulation. With the flow space of molten steel extruded and clogged, the molten steel jet is concentrated and strengthened under the constant steel throughput. The average inclination angle of molten steel jet from the nozzle side port first increases and then decreases slightly with time. The volume fraction of the clogging increases rapidly at first, and then the growth rate of the clogging decreases.
引用
收藏
页码:2629 / 2650
页数:22
相关论文
共 50 条
  • [21] COMPARISON BETWEEN EULER-EULER AND EULER-LAGRANGE COMPUTATIONS OF GAS-SOLID TURBULENT FLOW IN A HORIZONTAL CHANNEL WITH DIFFERENT WALL ROUGHNESS
    Konan, N. A.
    Lain, S.
    Simonin, O.
    Sommerfeld, M.
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A AND B, 2006, : 617 - 625
  • [22] ON THE NUMERICAL-SOLUTION OF EULER-LAGRANGE EQUATIONS
    POTRA, FA
    RHEINBOLDT, WC
    [J]. MECHANICS OF STRUCTURES AND MACHINES, 1991, 19 (01): : 1 - 18
  • [23] ON THE NUMERICAL-SOLUTION OF THE EULER-LAGRANGE EQUATIONS
    RABIER, PJ
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) : 318 - 329
  • [24] Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed
    Wojciech P.Adamczyk
    Adam Klimanek
    Ryszard A.Biaecki
    Gabriel Wecel
    Pawe Kozolub
    Tomasz Czakiert
    [J]. Particuology, 2014, 15 (04) : 129 - 137
  • [25] Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed
    Adamczyk, Wojciech P.
    Klimanek, Adam
    Bialecki, Ryszard A.
    Wecel, Gabriel
    Kozolub, Pawel
    Czakiert, Tomasz
    [J]. PARTICUOLOGY, 2014, 15 : 129 - 137
  • [26] TWO-PHASE FLOW LARGE EDDY SIMULATIONS OF A STAGED MULTIPOINT SWIRLING BURNER: COMPARISON BETWEEN EULER-EULER AND EULER-LAGRANGE DESCRIPTIONS
    Mesquita, Leo Cunha Caldeira
    Vie, Aymeric
    Ducruix, Sebastien
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 4B, 2017,
  • [27] ON THE VALIDITY OF THE EULER-LAGRANGE SYSTEM
    Carozza, Menita
    Kristensen, Jan
    di Napoli, Antonia Passarelli
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 51 - 62
  • [28] On the generalized Euler-Lagrange equations
    Chen, JW
    Lai, HC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 681 - 697
  • [29] A numerical scheme for Euler-Lagrange simulation of bubbly flows in complex systems
    Shams, E.
    Finn, J.
    Apte, S. V.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) : 1865 - 1898
  • [30] The structure of the Euler-Lagrange mapping
    D. Krupka
    [J]. Russian Mathematics, 2007, 51 (12) : 52 - 70