Explosive synchronization dependence on initial conditions: The minimal Kuramoto model

被引:27
|
作者
Bayani, Atiyeh [1 ]
Jafari, Sajad [1 ,2 ]
Azarnoush, Hamed [1 ]
Nazarimehr, Fahimeh [1 ]
Boccaletti, Stefano [3 ,4 ,5 ,6 ]
Perc, Matjaz [7 ,8 ,9 ,10 ,11 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Biomed Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Tehran Polytech, Hlth Technol Res Inst, Tehran, Iran
[3] Univ Rey Juan Carlos, Calle Tulipan S-N, Mostoles 28933, Madrid, Spain
[4] CNR, Inst Complex Syst, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[5] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow, Russia
[6] Indian Inst Technol, Dept Phys, Complex Syst Lab, Indore 453552, India
[7] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
[8] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 404332, Taiwan
[9] Alma Mater Europaea, Slovenska ul 17, Maribor 2000, Slovenia
[10] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[11] Kyung Hee Univ, Dept Phys, 26 Kyungheedae Ro, Seoul, South Korea
关键词
Kuramoto model; Network; Explosive synchronization; Continuous synchronization;
D O I
10.1016/j.chaos.2023.113243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Transitions from incoherent to coherent dynamical states can be observed in various real-world networks, ranging from neurons to power-grids. These transitions can be explosive or continuous, with far-reaching implications for the functioning of the affected system. It is therefore of the utmost importance to determine the conditions under which such transitions occur. While a lot of studies in literature focused on the dynamical and/or structural network properties that may generate explosive synchronization, here we report on the effects of different initial conditions. To this purpose, we consider the minimal network of Kuramoto oscillator that may display explosive synchronization, and we show that the nature of the transition changes from continuous to discontinuous as phases are differently initialized. We also determine the critical coupling strength for explosive synchronization, which also depends on the initial conditions.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Synchronization of relativistic particles in the hyperbolic Kuramoto model
    Ritchie, Louis M.
    Lohe, M. A.
    Williams, Anthony G.
    CHAOS, 2018, 28 (05)
  • [22] A RESEARCH ON PHASE SYNCHRONIZATION FOR EXTENDED KURAMOTO MODEL
    Jianhua Xu
    Changling Han
    Annals of Differential Equations, 2014, 30 (02) : 216 - 221
  • [23] Synchronization in the Kuramoto model in presence of stochastic resetting
    Sarkar, Mrinal
    Gupta, Shamik
    CHAOS, 2022, 32 (07)
  • [24] ON THE GENERIC COMPLETE SYNCHRONIZATION OF THE DISCRETE KURAMOTO MODEL
    Shim, Woojoo
    KINETIC AND RELATED MODELS, 2020, 13 (05) : 979 - 1005
  • [25] Synchronization of a Kuramoto type model in a dynamic network
    Jin, Chunyin
    Wu, Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [26] Quantum effects on the synchronization dynamics of the Kuramoto model
    Delmonte, Anna
    Romito, Alessandro
    Santoro, Giuseppe E.
    Fazio, Rosario
    PHYSICAL REVIEW A, 2023, 108 (03)
  • [27] Influence of noise on the synchronization of the stochastic Kuramoto model
    Bag, Bidhan Chandra
    Petrosyan, K. G.
    Hu, Chin-Kun
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [28] Remarks on the complete synchronization for the Kuramoto model with frustrations
    Ha, Seung-Yeal
    Kim, Hwa Kil
    Park, Jinyeong
    ANALYSIS AND APPLICATIONS, 2018, 16 (04) : 525 - 563
  • [29] Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions (vol 31, 063103, 2021)
    Frolov, Nikita
    Hramov, Alexander
    CHAOS, 2021, 31 (12)
  • [30] Exact and Approximate Stability Conditions for Cluster Synchronization of Kuramoto Oscillators
    Menara, Tommaso
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 205 - 210