Explosive synchronization dependence on initial conditions: The minimal Kuramoto model

被引:27
|
作者
Bayani, Atiyeh [1 ]
Jafari, Sajad [1 ,2 ]
Azarnoush, Hamed [1 ]
Nazarimehr, Fahimeh [1 ]
Boccaletti, Stefano [3 ,4 ,5 ,6 ]
Perc, Matjaz [7 ,8 ,9 ,10 ,11 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Biomed Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Tehran Polytech, Hlth Technol Res Inst, Tehran, Iran
[3] Univ Rey Juan Carlos, Calle Tulipan S-N, Mostoles 28933, Madrid, Spain
[4] CNR, Inst Complex Syst, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[5] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow, Russia
[6] Indian Inst Technol, Dept Phys, Complex Syst Lab, Indore 453552, India
[7] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, Slovenia
[8] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 404332, Taiwan
[9] Alma Mater Europaea, Slovenska ul 17, Maribor 2000, Slovenia
[10] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
[11] Kyung Hee Univ, Dept Phys, 26 Kyungheedae Ro, Seoul, South Korea
关键词
Kuramoto model; Network; Explosive synchronization; Continuous synchronization;
D O I
10.1016/j.chaos.2023.113243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Transitions from incoherent to coherent dynamical states can be observed in various real-world networks, ranging from neurons to power-grids. These transitions can be explosive or continuous, with far-reaching implications for the functioning of the affected system. It is therefore of the utmost importance to determine the conditions under which such transitions occur. While a lot of studies in literature focused on the dynamical and/or structural network properties that may generate explosive synchronization, here we report on the effects of different initial conditions. To this purpose, we consider the minimal network of Kuramoto oscillator that may display explosive synchronization, and we show that the nature of the transition changes from continuous to discontinuous as phases are differently initialized. We also determine the critical coupling strength for explosive synchronization, which also depends on the initial conditions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Explosive synchronization coexists with classical synchronization in the Kuramoto model
    Danziger, Michael M.
    Moskalenko, Olga I.
    Kurkin, Semen A.
    Zhang, Xiyun
    Havlin, Shlomo
    Boccaletti, Stefano
    CHAOS, 2016, 26 (06)
  • [2] Two-step and explosive synchronization in frequency-weighted Kuramoto model
    Ameli, Sara
    Samani, Keivan Aghababaei
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [3] Multiplexing induced explosive synchronization in Kuramoto oscillators with inertia
    Kachhvah, Ajay Deep
    Jalan, Sarika
    EPL, 2017, 119 (06)
  • [4] Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions
    Frolov, Nikita
    Hramov, Alexander
    CHAOS, 2021, 31 (06)
  • [5] Synchronization in a semiclassical Kuramoto model
    de Mendoza, Ignacio Hermoso
    Pachon, Leonardo A.
    Gomez-Gardenes, Jesus
    Zueco, David
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [6] The Synchronization Process in a Generalized Kuramoto Model
    Wang Jizhong
    Zhao, Xueyi
    Zhou, Jin
    Lu, Jun'an
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 7509 - 7513
  • [7] Synchronization Properties of Trees in the Kuramoto Model
    Dekker, Anthony H.
    Taylor, Richard
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02): : 596 - 617
  • [8] On the complete synchronization of the Kuramoto phase model
    Ha, Seung-Yeal
    Ha, Taeyoung
    Kim, Jong-Ho
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) : 1692 - 1700
  • [9] Conditions for global synchronization in networks of heterogeneous Kuramoto oscillators
    Mercado-Uribe, Angel
    Mendoza-Avila, Jesus
    Efimov, Denis
    Schiffer, Johannes
    AUTOMATICA, 2025, 175
  • [10] Synchronization Conditions for a Third-order Kuramoto Network
    Wu, Liang
    Chen, Haoyong
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 5834 - 5839