Techno-economic analysis of CO2/steam co-electrolysis process and synfuel production process coupled with steel manufacturing process

被引:10
|
作者
Hong, Gi Hoon [1 ]
Lee, Juwon [2 ]
Cho, Youngtak [3 ]
Hwang, Sungwon [2 ,3 ]
机构
[1] Inst Adv Engn, Plant Proc Dev Ctr, Yongin 17180, South Korea
[2] Inha Univ, Educ & Res Ctr Smart Energy & Mat, Dept Chem & Chem Engn, Incheon 22212, South Korea
[3] Inha Univ, Dept Smart Digital Engn, Incheon 22212, South Korea
关键词
CO2; SOEC; Fischer-Tropsch; Economic Assessment; Hydrocracking; HYDROCRACKING; POWER; IRON; OPTIMIZATION; SYSTEM; FUELS; GASES;
D O I
10.1007/s11814-022-1331-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Over the past few decades, reducing CO2 emissions has attracted attention at an industrial level worldwide. This study focuses on utilizing both the byproduct gas, including CO2, and waste heat produced from the steel-making process to produce synthetic fuel by integrating solid oxide electrolyzer cell (SOEC) technology with downstream Fischer-Tropsch and hydrocracking processes. CO2 can be collected from the byproduct gas and used as a feed for the SOEC, and waste heat from the steel-making process can be utilized as the main heat source for operation of the SOEC at high temperatures and to generate electrical power through heat recovery and steam generation (HRSG) as an energy source for the SOEC. The syngas (H-2 and CO) produced from the SOEC is then converted to synthetic oil through the FT process, and the yield of the synthetic oil is increased via the hydrocracking process by converting heavy oil to lighter fractions. The entire process was modeled using Aspen HYSYS software, and pinch technology was adopted to maximize the energy efficiency of the process. As a result, CO2 release was reduced by 452 tons/day and syngas was produced by 336.8 tons/day. The syngas produced was then converted to synthetic oil (306.7 tons/day) and light gas (44.24 tons/day). Economic assessment was completed based on the discounted cash flow method for two cases: electricity tariffs and new renewable energy prices. When the electricity tariff is implemented, profit is achieved in seven years, whereas the system becomes profitable in four years when newly regenerated surplus energy is utilized. If the price of renewable energy is reduced, profits may be achieved earlier.
引用
收藏
页码:740 / 753
页数:14
相关论文
共 50 条
  • [41] A techno-economic evaluation of the use of hydrogen in a steel production process, utilizing nuclear process heat
    Germeshuizen, L. M.
    Blom, P. W. E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10671 - 10682
  • [42] Design of an efficient CO2 methanation process and techno-economic analysis with CO2 capture from the flue gas of automotive shredder residue
    Wasnik, Chopendra G.
    Nakamura, Maki
    Machida, Hiroshi
    Ito, Junji
    Shiratori, Kazuyuki
    Norinaga, Koyo
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [43] Process simulation and techno-economic analysis on novel CO2 capture technologies for fluid catalytic cracking units
    Tang, Yuneng
    Li, Shenyong
    Liu, Cheng
    Qi, Yu
    Yu, Yunpeng
    Zhang, Kaibing
    Su, Bin
    Yu, Jianglong
    Zhang, Lian
    Dai, Baiqian
    FUEL PROCESSING TECHNOLOGY, 2023, 249
  • [44] Techno-economic analysis of a sustainable process for converting CO2 and H2O to feedstock for fuels and chemicals
    Kulkarni, Aniruddha P.
    Hos, Tomy
    Landau, Miron V.
    Fini, Daniel
    Giddey, Sarbjit
    Herskowitz, Moti
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (02) : 486 - 500
  • [45] Process Simulation and Techno-Economic Analysis of the Production of Sodium Methoxide
    Granjo, Jose F. O.
    Oliveira, Nuno M. C.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (01) : 156 - 167
  • [46] Process simulation and techno-economic assessment of SER steam gasification for hydrogen production
    Schweitzer, Daniel
    Albrecht, Friedemann Georg
    Schmid, Max
    Beirow, Marcel
    Spoerl, Reinhold
    Dietrich, Ralph-Uwe
    Seitz, Antje
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (02) : 569 - 579
  • [47] Techno-Economic Analysis of a Hybrid Process for Propylene and Ammonia Production
    Qin, Jian
    Pei, Chunlei
    Zhao, Chengjie
    Lu, Zhenpu
    Sun, Guodong
    Gong, Jinlong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (21) : 6999 - 7009
  • [48] Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers
    Zhang, Hanfei
    Desideri, Umberto
    ENERGY, 2020, 199
  • [49] When crop straw meets CO2-intensive process industries in China: The potential of CO2 mitigation and techno-economic analysis
    Chen, Minjiao
    Jiang, Peng
    Li, Meihua
    Zhao, Guanhan
    Lin, Han
    Mu, Liwen
    Lau, Lee Chung
    Zhu, Jiahua
    BIOMASS & BIOENERGY, 2025, 196
  • [50] Techno-economic Analysis and Carbon Footprint Accounting for Industrial CO2 Electrolysis Systems
    Gao, Tianqi
    Xia, Baokai
    Yang, Kang
    Li, Di
    Shao, Tianye
    Chen, Sheng
    Li, Qiang
    Duan, Jingjing
    ENERGY & FUELS, 2023, 37 (23) : 17997 - 18008