Combination of hyperspectral imaging and machine learning models for fast characterization and classification of municipal solid waste

被引:27
|
作者
Tao, Junyu [1 ]
Gu, Yude [1 ]
Hao, Xiaoling [1 ]
Liang, Rui [2 ]
Wang, Biyu [1 ]
Cheng, Zhanjun [2 ]
Yan, Beibei [2 ,3 ]
Chen, Guanyi [1 ,4 ]
机构
[1] Tianjin Univ Commerce, Sch Mech Engn, Tianjin 300134, Peoples R China
[2] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300350, Peoples R China
[3] Tianjin Engn Res Ctr Bio Gas Oil Technol, Tianjin Key Lab Biomass Wastes Utilizat, Tianjin 300072, Peoples R China
[4] Tibet Univ, Sch Sci, Lhasa 850012, Peoples R China
关键词
Municipal solid waste; Hyperspectral imaging; Machine learning; Elemental composition; Low heating value; ARTIFICIAL NEURAL-NETWORK; QUANTITATIVE-EVALUATION; ROBUSTNESS VALIDATION; IMPACT DAMAGE; PLASTICS;
D O I
10.1016/j.resconrec.2022.106731
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Determining thermochemical properties and eliminating inorganic components of municipal solid waste (MSW) are crucial to its thermochemical treatment. Traditional characterization and classification technologies have shortcomings including long duration, complex operation, and inevitable sample consumption. This study pro-posed a hyperspectral imaging and machine learning models based method to solve these problems. Under the optimal parameter conditions, the identification accuracy of inorganic components by F1 scoring reached nearly 100% in MSW, and the prediction accuracy of carbon, hydrogen, oxygen, nitrogen contents and low heating value (LHV)of organic components by mean relative error value reached 92.6%, 86.9%, 80.4%, 54.7% and 90.5%, respectively. The results validated the hypothesis that combination of hyperspectral imaging and ma-chine learning models are promising to accomplish fast characterization and classification of components in MSW, where principal component analysis was capable to abstract crucial information from the spectral pattern, and artificial neural network presented satisfactory classification and regression performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Contaminant detection in flexible polypropylene packaging waste using hyperspectral imaging and machine learning
    Bonifazi, Giuseppe
    Capobianco, Giuseppe
    Cucuzza, Paola
    Serranti, Silvia
    WASTE MANAGEMENT, 2025, 195 : 264 - 274
  • [42] Interpretable machine learning assisted spectroscopy for fast characterization of biomass and waste
    Liang, Rui
    Chen, Chao
    Sun, Tingxuan
    Tao, Junyu
    Hao, Xiaoling
    Gu, Yude
    Xu, Yaru
    Yan, Beibei
    Chen, Guanyi
    WASTE MANAGEMENT, 2023, 160 : 90 - 100
  • [43] Characterization of municipal solid waste in Istanbul, Turkey
    Yildiz, Senol
    Yaman, Cevat
    Demir, Goksel
    Ozcan, H. Kurtulus
    Coban, Asli
    Okten, Hatice Eser
    Sezer, Kadir
    Goren, Sami
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2013, 32 (03) : 734 - 739
  • [44] Hydrogeochemical characterization of Municipal Solid Waste landfill
    Nigro, Angela
    Barbieri, Maurizio
    Sappa, Giuseppe
    RENDICONTI ONLINE SOCIETA GEOLOGICA ITALIANA, 2015, 35 : 304 - 306
  • [45] Characterization of municipal solid waste collection operations
    Jaunich, Megan K.
    Levis, James W.
    DeCarolis, Joseph F.
    Gaston, Eliana V.
    Barlaz, Morton A.
    Bartelt-Hunt, Shannon L.
    Jones, Elizabeth G.
    Hauser, Lauren
    Jaikumar, Rohit
    RESOURCES CONSERVATION AND RECYCLING, 2016, 114 : 92 - 102
  • [46] Detection of early bruises in plum using hyperspectral imaging combination with machine learning algorithm
    Qiu, Zouquan
    Meng, Qinghua
    Wu, Zhefeng
    Pei, Shiying
    Ni, Chunyu
    Chang, Hongjuan
    Sang, Liting
    Yao, Jiawei
    Fang, Juncheng
    Chu, Jiahui
    Ma, Yuwen
    Huang, Yuqing
    Li, Yu
    SPECTROSCOPY LETTERS, 2024, 57 (10) : 608 - 620
  • [47] Reactivity characterization of municipal solid waste and biomass
    Nikku, Markku
    Deb, Anjan
    Sermyagina, Ekaterina
    Puro, Liisa
    FUEL, 2019, 254
  • [48] Dynamic characterization of municipal solid waste by SDMT
    Castelli, F.
    Maugeri, M.
    COUPLED PHENOMENA IN ENVIRONMENTAL GEOTECHNICS: FROM THEORETICAL AND EXPERIMENTAL RESEARCH TO PRACTICAL APPLICATIONS, 2013, : 307 - 312
  • [49] A Detailed Characterization of Household Municipal Solid Waste
    D. Mathioudakis
    K. Papadopoulou
    G. M. Lytras
    C. Pavlopoulos
    S. Niakas
    K. Filippou
    E. Melanitou
    D. F. Lekkas
    G. Lyberatos
    Waste and Biomass Valorization, 2021, 12 : 2945 - 2957
  • [50] Municipal Solid Waste Characterization in Luanda, Angola
    Kara, Ayse Irem
    Tezcan, Erol
    Patar, Gokce
    Yildiz, Kadriye
    Bacaci, Mahmut
    Hacimustafaoglu, Elif
    Gencosmanogullari, Mehmet
    Peker, Mevlut Fatih
    Hosoglu, Fatih
    PROCEEDINGS OF THE 6TH EURASIA WASTE MANAGEMENT SYMPOSIUM, EWMS 2022, 2022, : 656 - 659