Harmonic maps into sub-Riemannian Lie groups

被引:0
|
作者
Grong, Erlend [1 ]
Markina, Irina [1 ]
机构
[1] Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway
来源
关键词
Sub-Riemannian manifolds; horizontal maps; harmonic maps; Darboux derivative; REGULARITY;
D O I
10.3934/cam.2023025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define harmonic maps between sub-Riemannian manifolds by generalizing known definitions for Riemannian manifolds. We establish conditions for when a horizontal map into a Lie group with a left-invariant metric structure is a harmonic map. We show that sub-Riemannian harmonic maps can be abnormal or normal, just as sub-Riemannian geodesics. We illustrate our study by presenting the equations for harmonic maps into the Heisenberg group.
引用
收藏
页码:515 / 532
页数:18
相关论文
共 50 条
  • [41] Characterisation of the sub-Riemannian isometry groups of H-type groups
    Tan, KH
    Yang, XP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (01) : 87 - 100
  • [42] SUB-RIEMANNIAN GEOMETRY
    STRICHARTZ, RS
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (02) : 221 - 263
  • [43] Riemannian and Sub-Riemannian Geodesic Flows
    Godoy Molina, Mauricio
    Grong, Erlend
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1260 - 1273
  • [44] Riemannian and Sub-Riemannian Geodesic Flows
    Mauricio Godoy Molina
    Erlend Grong
    The Journal of Geometric Analysis, 2017, 27 : 1260 - 1273
  • [45] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Bizyaev, Ivan A.
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 759 - 774
  • [46] On sub-Riemannian geodesics on the Engel groups: Hamilton's equations
    Adams, Malcolm R.
    Tie, Jingzhi
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (14-15) : 1381 - 1406
  • [47] The sub-Riemannian cut locus of H-type groups
    Autenried, Christian
    Godoy Molina, Mauricio
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (01) : 4 - 12
  • [48] Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
    Ivan A. Bizyaev
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2016, 21 : 759 - 774
  • [49] Homogenization for sub-riemannian Lagrangians
    Morgado, Hector Sanchez
    NONLINEARITY, 2023, 36 (06) : 3043 - 3067
  • [50] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344