Nutritional requirements of human induced pluripotent stem cells

被引:7
|
作者
Lyra-Leite, Davi M. [1 ,2 ]
Copley, Raymond R. [3 ]
Freeman, Phillip P. [3 ]
Pongpamorn, Praeploy [1 ,2 ]
Shah, Disheet [1 ,2 ]
McKenna, Donald E. [3 ]
Lenny, Brian [4 ]
Pinheiro, Emily A. [1 ,2 ]
Weddle, Carly J. [1 ,2 ]
Gharib, Mennat [1 ,2 ]
Javed, Hoor [1 ,2 ]
Fonoudi, Hananeh [1 ,2 ]
Sapkota, Yadav [4 ]
Burridge, Paul W. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Pharmacol, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Northwestern Univ, Ctr Pharmacogen, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Clever Carnivore Inc, Chicago, IL 60614 USA
[4] St Jude Childrens Res Hosp, Dept Epidemiol & Canc Control, Memphis, TN 38105 USA
来源
STEM CELL REPORTS | 2023年 / 18卷 / 06期
关键词
MOLECULAR GROWTH REQUIREMENTS; DIPLOID CHINESE-HAMSTER; MAMMALIAN CELLS; CLONAL GROWTH; TISSUE CULTURE; HELA CELLS; ACID; DERIVATION; GLUTAMINE; NEURONS;
D O I
10.1016/j.stemcr.2023.05.004
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The nutritional requirements for human induced pluripotent stem cell (hiPSC) growth have not been extensively studied. Here, building on our prior work that established the suitable non-basal medium components for hiPSC growth, we develop a simplified basal medium consisting of just 39 components, demonstrating that many ingredients of DMEM/F12 are either not essential or are at suboptimal concentrations. This new basal medium along with the supplement, which we call BMEM, enhances the growth rate of hiPSCs over DMEM/ F12-based media, supports derivation of multiple hiPSC lines, and allows differentiation to multiple lineages. hiPSCs cultured in BMEM consistently have enhanced expression of undifferentiated cell markers such as POU5F1 and NANOG, along with increased expression of markers of the primed state and reduced expression of markers of the naive state. This work describes titration of the nutritional requirements of human pluripotent cell culture and identifies that suitable nutrition enhances the pluripotent state.
引用
收藏
页码:1371 / 1387
页数:17
相关论文
共 50 条
  • [31] Generation and Characterization of Human Induced Pluripotent Stem Cells
    Shutova, M. V.
    Bogomazova, A. N.
    Lagarkova, M. A.
    Kiselev, S. L.
    ACTA NATURAE, 2009, 1 (02): : 91 - 92
  • [32] Modeling of Human Cardiomyopathy with Induced Pluripotent Stem Cells
    Lee, Yee-Ki
    Ng, Kwong-Man
    Tse, Hung-Fat
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (10) : 2562 - 2585
  • [33] Generation of human androgenetic induced pluripotent stem cells
    Choi, Na Young
    Bang, Jin Seok
    Park, Yo Seph
    Lee, Minseong
    Hwang, Han Sung
    Ko, Kisung
    Myung, Soon Chul
    Tapia, Natalia
    Schoeler, Hans R.
    Kim, Gwang Jun
    Ko, Kinarm
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] Induced Pluripotent Stem Cells from Human Kidney
    Rogers, Ian
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2011, 22 (07): : 1179 - 1180
  • [35] Biofabrication of Scaffolds for Human Induced Pluripotent Stem Cells
    Lyu, X.
    Bi, H.
    Ramos, R.
    Finkelstein, E. B.
    Ye, K.
    Ren, D.
    Jin, S.
    TISSUE ENGINEERING PART A, 2017, 23 : S137 - S137
  • [36] Generation of human-induced pluripotent stem cells
    Park, In-Hyun
    Lerou, Paul H.
    Zhao, Rui
    Huo, Hongguang
    Daley, George Q.
    NATURE PROTOCOLS, 2008, 3 (07) : 1180 - 1186
  • [37] Translational prospects for human induced pluripotent stem cells
    Csete, Marie
    REGENERATIVE MEDICINE, 2010, 5 (04) : 509 - 519
  • [38] Modeling Leukemia with Human Induced Pluripotent Stem Cells
    Papapetrou, Eirini P.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (12):
  • [39] Human Induced Pluripotent Stem Cells on Autologous Feeders
    Takahashi, Kazutoshi
    Narita, Megumi
    Yokura, Midori
    Ichisaka, Tomoko
    Yamanaka, Shinya
    PLOS ONE, 2009, 4 (12):
  • [40] Osteogenic potential of human induced pluripotent stem cells
    Ko, J-Y
    Park, S.
    Im, G-I
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 368 - 368