Hydrological responses to co-impacts of climate change and land use/cover change based on CMIP6 in the Ganjiang River, Poyang Lake basin

被引:18
|
作者
Gong, Li [1 ,2 ]
Zhang, Xiang [1 ,2 ]
Pan, Guoyan [1 ,2 ]
Zhao, Jingyi [1 ,2 ]
Zhao, Ye [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, 8 Donghu South Rd, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Water Syst Sci Sponge City Construct, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrological response; Land Use; Cover Change; Global climate models; Two -Factor Analysis; Streamflow; Poyang Lake Basin; USE/LAND COVER; RUNOFF; SCENARIOS; WATER; PRECIPITATION; URBANIZATION; SIMULATION; PREDICTION; CATCHMENT; DYNAMICS;
D O I
10.1016/j.ancene.2023.100368
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change and Land Use/Cover Change, affected by human activity, are the two main factors influencing the regional water cycle and water management. However, studies of co-impacts based on future scenario predictions are still lacking. This study proposed a complete methodology for simulating future changes in water resources and distinguishing the independent and synergistic effects of climate change and land use change. The coupling prediction model of land use and the global climate models were used for scenario predictions; the hydrological model and statistical methods were used for simulations and analyses. The Ganjiang River, the largest tributary of Poyang Lake, is chosen as the study area. In the future, the main trend of change in land use would be the expansion of construction land in the northern part of the basin, and the future annual precipitation and temperature (p < 0.5) would increase. In this basin, runoff is more sensitive to climate change than to land use/cover change, and the synergistic effects are not substantial. Most climate scenarios showed a significant change in monthly peak runoff. The current peak is in June; this is projected to decrease with the simulated future peak in August, causing problems in basin flood control and Poyang Lake water level regulation. This study proposed a methodology integrating the global climate models with predicted land use scenarios and tested the feasibility at the watershed scale by the case study. It can serve as a reference for co-impact studies considering different scenarios and be extended to basins with similar areas, underlying surface variation in-tensity, or hydro-climatic characteristics, valuable for sustainable water resources management in the Anthropocene.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A study on hydrological responses of the Fuhe River Basin to combined effects of land use and climate change
    Ma, Han
    Zhong, Lei
    Fu, Yunfei
    Cheng, Meilin
    Wang, Xian
    Cheng, Ming
    Chang, Yaoxin
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 48
  • [32] Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia
    Ayalew, Ayenew Desalegn
    Wagner, Paul D.
    Tigabu, Tibebe B.
    Sahlu, Dejene
    Fohrer, Nicola
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (08) : 2788 - 2807
  • [33] On hydrological response to land-use/cover change in Luanhe River basin
    Yang, Z. (yangzy@iwhr.com), 1600, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press (25):
  • [34] Impacts of Land Use and Land Cover Change on Soil Erosion and Hydrological Responses in Ethiopia
    Negese, Ajanaw
    APPLIED AND ENVIRONMENTAL SOIL SCIENCE, 2021, 2021
  • [35] CMIP6⁃based meteorological drought characteristic study under climate change in the Hanjiang River Basin
    Wang, Lei
    Zeng, Sidong
    Yang, Linhan
    Huang, Shanshan
    Mao, Wenyao
    Xia, Jun
    Water Resources Protection, 2024, 40 (05) : 39 - 45
  • [36] Effects of climate change on wet and dry spells in Kelantan River basin using physically-based hydrological model and CMIP6 scenarios
    Arbai, Nurul Afiqah Mohamad
    Irie, Masayasu
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2025, 58
  • [37] The impacts of climate variation and land use/cover change on net primary productivity in the Tumen River Basin
    Ding, Ning
    Piao, Dongfan
    Cui, Guishan
    Jeon, Seongwoo
    LANDSCAPE AND ECOLOGICAL ENGINEERING, 2022, 18 (02) : 157 - 170
  • [38] The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China
    Cuo, Lan
    Zhang, Yongxin
    Gao, Yanhong
    Hao, Zhenchun
    Cairang, Luosang
    JOURNAL OF HYDROLOGY, 2013, 502 : 37 - 52
  • [39] The impacts of climate variation and land use/cover change on net primary productivity in the Tumen River Basin
    Ning Ding
    Dongfan Piao
    Guishan Cui
    Seongwoo Jeon
    Landscape and Ecological Engineering, 2022, 18 : 157 - 170
  • [40] Assessment of climate change impacts on hydrological processes in the Usangu catchment of Tanzania under CMIP6 scenarios
    Mollel, Gift Raphael
    Mulungu, Deogratias M. M.
    Nobert, Joel
    Alexander, Augustina C.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (11) : 4162 - 4182