A clean strategy of concrete curing in cold climate: Solar thermal energy storage based on phase change material

被引:78
|
作者
Yu, Kunyang [1 ,2 ,3 ]
Jia, Minjie [1 ]
Yang, Yingzi [1 ]
Liu, Yushi [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Key Lab Struct Dynam Behav & Control, Minist Educ, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Minist Ind & Informat Technol, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Concrete curing; Solar thermal energy storage; Phase change material; Clean; Rapid construction; FROST DAMAGE; CONDUCTIVITY; TEMPERATURE; COMPOSITES; PCMS;
D O I
10.1016/j.apenergy.2022.120375
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a novel strategy of concrete curing was developed by solar thermal energy storage based on phase change material (PCM), in order to prevent concrete from frost damage at early age and promote the rapid growth of concrete strength in cold climate. This method utilized huge latent heat of thermal energy storage layer (TESL) containing PCM to achieve continuous curing of concrete at positive temperature, and transparent insulation layer (TIL) was set outside so that TESL can fully absorb a large amount of thermal energy through solar radiation to complete repeated phase transition between day and night. Moreover, a numerical method was proposed to guide the reasonable design of TESL under different climatic conditions and it turned out that the optimum thickness of TESL ranged from 0.87 cm to 4.86 cm. Experiment results indicated that concrete specimen cured by the novel curing strategy achieved an excellent curing temperature history and it took only 60 h to reach the design strength. In addition, economic evaluation results suggested low cost, prominent energy saving and emission reduction performance of the proposed curing method in the whole service cycle. This work provided new insights into an efficient and clean solution to achieving the rapid construction of concrete en-gineering in cold climate.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Enhancement of Thermal Energy Storage Using Phase-Change Material under Jordanian Climate
    Sakhrieh, A.
    Abdullat, Y.
    Hamdan, M. A.
    JOURNAL OF INFRASTRUCTURE SYSTEMS, 2016, 22 (04)
  • [32] MXene-based phase change materials for solar thermal energy storage
    Solangi, Nadeem Hussain
    Mubarak, Nabisab Mujawar
    Karri, Rama Rao
    Mazari, Shaukat Ali
    Jatoi, Abdul Sattar
    Koduru, Janardhan Reddy
    Dehghani, Mohammad Hadi
    ENERGY CONVERSION AND MANAGEMENT, 2022, 273
  • [33] Thermally enhanced nanocomposite phase change material slurry for solar-thermal energy storage
    Kazaz, Oguzhan
    Karimi, Nader
    Kumar, Shanmugam
    Falcone, Gioia
    Paul, Manosh C.
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [34] Review on the development of high temperature phase change material composites for solar thermal energy storage
    Jiang, Yifeng
    Liu, Ming
    Sun, Yanping
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 203
  • [35] Thermal analysis of a natural circulation solar air heater with phase change material energy storage
    Enibe, SO
    RENEWABLE ENERGY, 2003, 28 (14) : 2269 - 2299
  • [36] Thermal performance and optimization of a casing pipe solar energy storage floor with phase change material
    Liu, Yanfeng
    Tian, Zhijun
    Song, Cong
    Chen, Yaowen
    Li, Yong
    Liu, Jiaping
    ENERGY AND BUILDINGS, 2021, 247
  • [37] Design of a Protection Thermal Energy Storage Using Phase Change Material Coupled to a Solar Receiver
    Verdier, D.
    Falcoz, Q.
    Ferriere, A.
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2014, 33 (06) : 509 - 523
  • [38] SOLAR THERMAL ENERGY STORAGE WITH PHASE CHANGE MATERIAL FOR DOMESTIC ACTIVE SPACE HEATING APPLICATIONS
    Shukla, Pushpendra Kumar
    Kishan, P. Anil
    PROCEEDINGS OF CONV-22: INT SYMP ON CONVECTIVE HEAT AND MASS TRANSFER, 2022, 2022,
  • [39] Copper-dispersed solar salt: An improved phase change material for thermal energy storage
    Saranprabhu, M. K.
    Rajan, K. S.
    THERMOCHIMICA ACTA, 2022, 716
  • [40] Location optimization of phase change material for thermal energy storage in concrete block for development of energy efficient buildings
    Patel, Bhaskar
    Rathore, Pushpendra Kumar Singh
    Gupta, Naveen Kumar
    Sikarwar, Basant Singh
    Sharma, R. K.
    Kumar, Rajan
    Pandey, A. K.
    RENEWABLE ENERGY, 2023, 218