Towards a general-purpose foundation model for computational pathology

被引:119
|
作者
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Ding, Tong [1 ,6 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Williamson, Drew F. K. [1 ,2 ,3 ]
Jaume, Guillaume [1 ,2 ,3 ,4 ]
Song, Andrew H. [1 ,2 ,3 ,4 ]
Chen, Bowen [1 ,2 ]
Zhang, Andrew [1 ,2 ,3 ,4 ,8 ]
Shao, Daniel [1 ,2 ,3 ,4 ,8 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Williams, Mane [1 ,2 ,3 ,4 ,5 ]
Oldenburg, Lukas [1 ]
Weishaupt, Luca L. [1 ,2 ,3 ,4 ,8 ]
Wang, Judy J. [1 ]
Vaidya, Anurag [1 ,2 ,3 ,4 ,8 ]
Le, Long Phi [2 ,8 ]
Gerber, Georg [1 ]
Sahai, Sharifa [1 ,2 ,3 ,4 ,9 ]
Williams, Walt [1 ,6 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,10 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Canc Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[7] Massachusetts Inst Technol MIT, Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard MIT, Hlth Sci & Technol, Cambridge, MA USA
[9] Harvard Univ, Dept Syst Biol, Cambridge, MA USA
[10] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
SOMATIC GENOMIC LANDSCAPE; ARTIFICIAL-INTELLIGENCE; CANCER; ADENOCARCINOMAS; BIOPSIES; FEATURES; SYSTEM;
D O I
10.1038/s41591-024-02857-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
引用
收藏
页码:850 / 862
页数:13
相关论文
共 50 条
  • [32] Automatic differentiation of the general-purpose computational fluid dynamics package FLUENT
    Bischot, Christian H.
    Buecker, H. Martin
    Rasch, Arno
    Slusanschi, Emil
    Lang, Bruno
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2007, 129 (05): : 652 - 658
  • [33] Robust Circuit and System Design for General-Purpose Computational Resistive Memories
    Pinto, Felipe
    Vourkas, Ioannis
    ELECTRONICS, 2021, 10 (09)
  • [34] A general-purpose SPICE model for multiconductor transmission lines
    Celik, M
    Cangellaris, AC
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING - IEEE 5TH TOPICAL MEETING, 1996, : 155 - 158
  • [35] Solving problems in computational physics using a general-purpose PDE solver
    Fitzgerald, RM
    Sewell, G
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 124 (2-3) : 132 - 138
  • [36] The raw microprocessor: A computational fabric for software circuits and general-purpose programs
    Taylor, MB
    Kim, J
    Miller, J
    Ghodrat, F
    Greenwald, B
    Hoffman, H
    Johnson, P
    Lee, JW
    Lee, W
    Ma, A
    Saraf, A
    Seneski, M
    Shnidman, N
    Strumpen, V
    Frank, M
    Amarasinghe, S
    Agarwal, A
    IEEE MICRO, 2002, 22 (02) : 25 - 35
  • [37] PRACTICAL APPLICATIONS OF A GENERAL-PURPOSE TCA CYCLE MODEL
    KELLEHER, JK
    MALLET, RT
    BRYAN, BM
    BIOPHYSICAL JOURNAL, 1985, 47 (02) : A239 - A239
  • [38] A Syntactic Neural Model for General-Purpose Code Generation
    Yin, Pengcheng
    Neubig, Graham
    PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 440 - 450
  • [39] GENERAL-PURPOSE ELECTRONIC MODEL FOR ARBITRARY CONFIGURATIONS OF NEURONS
    MACGREGOR, RJ
    OLIVER, RM
    JOURNAL OF THEORETICAL BIOLOGY, 1973, 38 (03) : 527 - +
  • [40] General-purpose foundation models for increased autonomy in robot-assisted surgery
    Schmidgall, Samuel
    Kim, Ji Woong
    Kuntz, Alan
    Ghazi, Ahmed Ezzat
    Krieger, Axel
    NATURE MACHINE INTELLIGENCE, 2024, 6 (11) : 1275 - 1283