Field-Flux Finite Element Formulation for Wave Propagation in Bianisotropic Media

被引:1
|
作者
Nitas, Michalis [1 ]
Salonikios, Vasileios [2 ]
Amanatiadis, Stamatios [2 ]
Arslanagic, Samel [1 ]
机构
[1] Tech Univ Denmark, Dept Space Res & Technol, Bld 348,Orsteds Plads, DK-2800 Lyngby, Denmark
[2] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki, Greece
关键词
Bianisotropic materials; field-flux formulations; magnetoelectric coupling; wave propagation;
D O I
10.23919/EuCAP57121.2023.10133222
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive a field-flux Finite Element formulation for the inclusion of bianisotropic materials in wave propagation electromagnetic problems. A boundary condition is proposed for the efficient excitation and absorption of the supported modes. Computational results are compared with analytical solutions from the literature for a homogeneous omega bianisotropic medium. Perfect agreement is exhibited, proving the efficiency and robustness of the proposed formulation.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] A spectrally formulated finite element for analysis of wave propagation in layered composite media
    Chakraborty, A
    Gopalakrishnan, S
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 166 - 171
  • [32] A hybrid Galerkin finite element method for seismic wave propagation in fractured media
    Vamaraju, Janaki
    Sen, Mrinal K.
    De Basabe, Jonas
    Wheeler, Mary
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 857 - 878
  • [33] A finite element method for modelling electromechanical wave propagation in anisotropic piezoelectric media
    Rahman, S.
    Langtangen, H. P.
    Barnes, C. H. W.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (02) : 271 - 292
  • [34] Finite element analysis of wave propagation in fluid-saturated porous media
    Bo Y.
    Zhanfang L.
    Xiangwei Z.
    Applied Mathematics and Mechanics, 1999, 20 (12) : 1331 - 1341
  • [35] A finite element for viscothermal wave propagation
    Kampinga, W. R.
    Wijnant, Y. H.
    de Boer, A.
    PROCEEDINGS OF ISMA 2008: INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS. 1-8, 2008, : 4271 - 4278
  • [36] A generalized multiscale finite element method for elastic wave propagation in fractured media
    Chung E.T.
    Efendiev Y.
    Gibson R.L., Jr.
    Vasilyeva M.
    GEM - International Journal on Geomathematics, 2016, 7 (2) : 163 - 182
  • [37] Finite Element Flux-Corrected Transport Method for Wave Propagation in Heterogeneous Solids
    Mariani, Stefano
    Martini, Roberto
    Ghisi, Aldo
    ALGORITHMS, 2009, 2 (01): : 1 - 18
  • [38] A finite element-thin layer element coupling method for near-field wave propagation in fluid-saturated porous media based on u-U dynamic formulation
    Jiao, Hongyun
    Li, Liang
    Du, Xiuli
    Shi, Peixin
    Wang, Man
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2022, 158
  • [39] Control of wave propagation response using quasi crystals: A formulation based on spectral finite element
    Chellappan, Vinita
    Gopalakrishnan, S.
    Mani, V
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (07) : 579 - 600
  • [40] Nonlinear hybrid vector finite element method for modeling wave propagation in nonlinear media
    Worcester Polytechnic Inst, Worcester, United States
    Radio Sci, 4 (913-922):