MAPPING THE SURFACE URBAN HEAT ISLAND EFFECT USING THE LANDSAT SURFACE TEMPERATURE PRODUCT

被引:0
|
作者
Mueller, Chase [1 ]
Hussain, Reza [1 ]
Xian, George [2 ]
Shi, Hua [3 ]
Arab, Saeed [1 ]
机构
[1] US Geol Survey USGS, KBR Inc, Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA
[2] USGS EROS Ctr, Sioux Falls, SD 57198 USA
[3] USGS EROS Ctr, ASRC Fed Data Solut, Sioux Falls, SD 57198 USA
关键词
Surface temperature; urban; hotspot; land cover; CLIMATE;
D O I
10.1109/IGARSS52108.2023.10282386
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Urban development and associated land cover and land use change alter the thermal, hydrological, and physical properties of the land surface. Urban areas usually exhibit relatively warmer air and surface temperatures than surrounding non-urban lands, a phenomenon recognized as Surface Urban Heat Island (SUHI). As urban areas continue to develop and the climate continues to warm, it has become increasingly important to quantify and map the SUHI effect and learn how to mitigate it. To help meet the expanding need of analysis ready data for SUHI based studies, a methodology was developed to evaluate Land Surface Temperature (LST) using the Landsat Collection 1 Provisional Surface Temperature Science Product. The Landsat derived LST products were processed for 50 major cities throughout the Conterminous U.S. The SUHI product package includes per-pixel annual surface temperature, annual intensity, annual hotspot, and hotspot probability bands from 1985 to 2020.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条
  • [31] ANALYSIS OF URBAN HEAT ISLAND EFFECT BASED ON CHANGES OF URBAN SURFACE PARAMETERS
    Teng, Xiufu
    Eun, Kim Ji
    THERMAL SCIENCE, 2024, 28 (3B): : 2717 - 2732
  • [32] Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model
    Li, Huidong
    Zhou, Yuyu
    Jia, Gensuo
    Zhao, Kaiguang
    Dong, Jinwei
    GEOSCIENCE FRONTIERS, 2022, 13 (01)
  • [33] Analyzing the Urban Heat Island Using Time Series Land Surface Temperature (LST) data
    Wang, Weimin
    Liang, Hong
    Yang, Lijun
    Liu, Kai
    Su, Hongbo
    Li, Xueke
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5874 - 5876
  • [34] Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model
    Huidong Lia
    Yuyu Zhou
    Gensuo Jia
    Kaiguang Zhao
    Jinwei Dong
    Geoscience Frontiers, 2022, 13 (01) : 484 - 493
  • [35] Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model
    Huidong Lia
    Yuyu Zhou
    Gensuo Jia
    Kaiguang Zhao
    Jinwei Dong
    Geoscience Frontiers, 2022, (01) : 484 - 493
  • [36] Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987-2015)
    Estoque, Ronald C.
    Murayama, Yuji
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 133 : 18 - 29
  • [37] Impacts of urban biophysical composition on land surface temperature in urban heat island clusters
    Guo, Guanhua
    Wu, Zhifeng
    Xiao, Rongbo
    Chen, Yingbiao
    Liu, Xiaonan
    Zhang, Xiaoshi
    LANDSCAPE AND URBAN PLANNING, 2015, 135 : 1 - 10
  • [38] Effects of Urban Redevelopment on Surface Urban Heat Island
    Li, Dan
    Yan, Shaofeng
    Chen, Guangzhao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2366 - 2373
  • [39] Analysis of urban built-up areas and surface urban heat island using downscaled MODIS derived land surface temperature data
    Mukherjee, Sandip
    Joshi, P. K.
    Garg, R. D.
    GEOCARTO INTERNATIONAL, 2017, 32 (08) : 900 - 918
  • [40] Characterizing the Urban Heat Island in Beijing Using Landsat Imagery
    Yu, Gengkang
    Yang, Shenbin
    Shen, Shuanghe
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 1: ADVANCES ON SPACE WEATHER, METEOROLOGY AND APPLIED PHYSICS, 2010, : 191 - 196