Personal Protective Equipment Detection: A Deep-Learning-Based Sustainable Approach

被引:8
|
作者
Ahmed, Mohammed Imran Basheer [1 ]
Saraireh, Linah [2 ]
Rahman, Atta [3 ]
Al-Qarawi, Seba [1 ]
Mhran, Afnan [1 ]
Al-Jalaoud, Joud [1 ]
Al-Mudaifer, Danah [1 ]
Al-Haidar, Fayrouz [1 ]
Alkhulaifi, Dania [2 ]
Youldash, Mustafa [1 ]
Gollapalli, Mohammed [4 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Business Adm, Dept Management Informat Syst, POB 1982, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Informat Syst, POB 1982, Dammam 31441, Saudi Arabia
关键词
Artificial Intelligence; PPE detection; computer vision; object detection; mAP score; CONSTRUCTION; INJURIES; WORKERS;
D O I
10.3390/su151813990
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Personal protective equipment (PPE) can increase the safety of the worker for sure by reducing the probability and severity of injury or fatal incidents at construction, chemical, and hazardous sites. PPE is widely required to offer a satisfiable safety level not only for protection against the accidents at the aforementioned sites but also for chemical hazards. However, for several reasons or negligence, workers may not commit to and comply with the regulations of wearing the equipment, occasionally. Since manual monitoring is laborious and erroneous, the situation demands the development of intelligent monitoring systems to offer the automated real-time and accurate detection of PPE compliance. As a solution, in this study, Deep Learning and Computer Vision are investigated to offer near real-time and accurate PPE detection. The four colored hardhats, vest, safety glass (CHVG) dataset was utilized to train and evaluate the performance of the proposed model. It is noteworthy that the solution can detect eight variate classes of the PPE, namely red, blue, white, yellow helmets, head, person, vest, and glass. A two-stage detector based on the Fast-Region-based Convolutional Neural Network (RCNN) was trained on 1699 annotated images. The proposed model accomplished an acceptable mean average precision (mAP) of 96% in contrast to the state-of-the-art studies in literature. The proposed study is a potential contribution towards the avoidance and prevention of fatal/non-fatal industrial incidents by means of PPE detection in real-time.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A deep-learning-based approach for adenoid hypertrophy diagnosis
    Shen, Yi
    Li, Xiaohu
    Liang, Xiao
    Xu, Hai
    Li, Chuanfu
    Yu, Yongqiang
    Qiu, Bensheng
    MEDICAL PHYSICS, 2020, 47 (05) : 2171 - 2181
  • [32] Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach
    Avazov, Kuldoshbay
    Mukhiddinov, Mukhriddin
    Makhmudov, Fazliddin
    Cho, Young Im
    ELECTRONICS, 2022, 11 (01)
  • [33] A COVID-19 Safety Monitoring System: Personal Protective Equipment (PPE) Detection using Deep Learning
    Collo, Mark Lester R.
    Esguerra, John Richard M.
    Sevilla, Rovenson, V
    Merin, Jovencio
    Malunao, Dennis C.
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 295 - 299
  • [34] What are sustainable solutions for pandemic personal protective equipment?
    Kleber, Julie
    CLINICAL JOURNAL OF ONCOLOGY NURSING, 2022, 26 (01) : 120 - 120
  • [35] Environmentally Sustainable Management of Used Personal Protective Equipment
    Singh, Narendra
    Tang, Yuanyuan
    Ogunseitan, Oladele A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (14) : 8500 - 8502
  • [36] Deep-Learning-Based Anti-Collision System for Construction Equipment Operators
    Lee, Yun-Sung
    Kim, Do-Keun
    Kim, Jung-Hoon
    SUSTAINABILITY, 2023, 15 (23)
  • [37] A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves
    Abdullah, Akram
    Amran, Gehad Abdullah
    Tahmid, S. M. Ahanaf
    Alabrah, Amerah
    AL-Bakhrani, Ali A.
    Ali, Abdulaziz
    AGRONOMY-BASEL, 2024, 14 (07):
  • [38] Deep-Learning-Based Signal Detection for Banded Linear Systems
    Fan, Congmin
    Yuan, Xiaojun
    Zhang, Ying-Jun Angela
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [39] A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment
    Li, Zhe
    Li, Jingyue
    Wang, Yi
    Wang, Kesheng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (1-4): : 499 - 510
  • [40] Literature Review of Deep-Learning-Based Detection of Violence in Video
    Negre, Pablo
    Alonso, Ricardo S.
    Gonzalez-Briones, Alfonso
    Prieto, Javier
    Rodriguez-Gonzalez, Sara
    SENSORS, 2024, 24 (12)