RBF based some implicit-explicit finite difference schemes for pricing option under extended jump-diffusion model

被引:4
|
作者
Yadav, Rajesh [1 ]
Yadav, Deepak Kumar [1 ]
Kumar, Alpesh [1 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Math Sci, Jais Amethi 229304, India
关键词
Radial basis function; Jump-diffusion model; Local-volatility; Options pricing; Operator splitting method; Stability analysis; RADIAL BASIS FUNCTIONS; AMERICAN OPTIONS; NUMERICAL VALUATION; LOCAL VOLATILITY; MERTON;
D O I
10.1016/j.enganabound.2023.08.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript, we presented some efficient and accurate radial basis function-based finite difference (RBFFD) implicit-explicit (IMEX) numerical techniques for pricing the option when the underlying asset follows the jump-diffusion process with local volatility. For the time semi-discretization, we present three numerical techniques Crank-Nikolson Leap-Frog (CNLF), Crank-Nikolson AdamBashforth (CNAB), and Backward difference formula of order two (BDF2), incorporated with the radial basis function based finite difference (RBF-FD) method. The stabilities of time semi-discretized schemes are also proved. The computational methods developed for the European option are extended for the American option. We amalgamate the RBF-FD implicit- explicit methods with an operator splitting (OS) method for solving the linear complementarity problem (LCP) with variable parameters that determines the price of an American option. In order to demonstrate the effectiveness and precision of the current techniques, numerical data for European and American put options under the Merton and Kou models are presented.
引用
收藏
页码:392 / 406
页数:15
相关论文
共 50 条
  • [21] Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility
    Ruan, Xinfeng
    Zhu, Wenli
    Li, Shuang
    Huang, Jiexiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Ratanov, Nikita
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (03) : 829 - 845
  • [23] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Nikita Ratanov
    Methodology and Computing in Applied Probability, 2016, 18 : 829 - 845
  • [24] A Finite Difference Scheme for Pricing American Put Options under Kou's Jump-Diffusion Model
    Huang, Jian
    Cen, Zhongdi
    Le, Anbo
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [25] IMEX schemes for pricing options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 33 - 45
  • [26] Option Pricing Model with Transaction Cost in the Jump-Diffusion Environment
    Zhang Yuansi
    CONTEMPORARY INNOVATION AND DEVELOPMENT IN MANAGEMENT SCIENCE, 2012, : 29 - 34
  • [27] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [28] Analysis of a jump-diffusion option pricing model with serially correlated jump sizes
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Chao, Wan-Ling
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 953 - 979
  • [29] Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model
    Deng, Guohe
    COMPLEXITY, 2020, 2020
  • [30] Pricing European Option under Fractional Jump-diffusion Ornstein-Uhlenbeck Model
    Xue Hong
    Sun Yudong
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 164 - 169