RBF based some implicit-explicit finite difference schemes for pricing option under extended jump-diffusion model

被引:4
|
作者
Yadav, Rajesh [1 ]
Yadav, Deepak Kumar [1 ]
Kumar, Alpesh [1 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Math Sci, Jais Amethi 229304, India
关键词
Radial basis function; Jump-diffusion model; Local-volatility; Options pricing; Operator splitting method; Stability analysis; RADIAL BASIS FUNCTIONS; AMERICAN OPTIONS; NUMERICAL VALUATION; LOCAL VOLATILITY; MERTON;
D O I
10.1016/j.enganabound.2023.08.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript, we presented some efficient and accurate radial basis function-based finite difference (RBFFD) implicit-explicit (IMEX) numerical techniques for pricing the option when the underlying asset follows the jump-diffusion process with local volatility. For the time semi-discretization, we present three numerical techniques Crank-Nikolson Leap-Frog (CNLF), Crank-Nikolson AdamBashforth (CNAB), and Backward difference formula of order two (BDF2), incorporated with the radial basis function based finite difference (RBF-FD) method. The stabilities of time semi-discretized schemes are also proved. The computational methods developed for the European option are extended for the American option. We amalgamate the RBF-FD implicit- explicit methods with an operator splitting (OS) method for solving the linear complementarity problem (LCP) with variable parameters that determines the price of an American option. In order to demonstrate the effectiveness and precision of the current techniques, numerical data for European and American put options under the Merton and Kou models are presented.
引用
收藏
页码:392 / 406
页数:15
相关论文
共 50 条
  • [1] RBF-FD based some implicit-explicit methods for pricing option under regime-switching jump-diffusion model with variable coefficients
    Yadav, Rajesh
    Yadav, Deepak Kumar
    Kumar, Alpesh
    NUMERICAL ALGORITHMS, 2023, 97 (2) : 645 - 685
  • [2] A radial basis function based implicit-explicit method for option pricing under jump-diffusion models
    Kadalbajoo, Mohan K.
    Kumar, Alpesh
    Tripathi, Lok Pati
    APPLIED NUMERICAL MATHEMATICS, 2016, 110 : 159 - 173
  • [3] A RBF based finite difference method for option pricing under regime-switching jump-diffusion model
    Kumar, Alpesh
    Kumar, B. V. Rathish
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 451 - 459
  • [4] Implicit-explicit numerical schemes for jump-diffusion processes
    Briani, Maya
    Natalini, Roberto
    Russo, Giovanni
    CALCOLO, 2007, 44 (01) : 33 - 57
  • [5] A jump-diffusion model for option pricing
    Kou, SG
    MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101
  • [6] Finite volume methods for pricing jump-diffusion option model
    Gan X.
    Yin J.
    Li R.
    Tongji Daxue Xuebao/Journal of Tongji University, 2016, 44 (09): : 1458 - 1465
  • [7] Implicit-explicit high-order methods for pricing options under Merton's jump-diffusion models
    Chen, Yingzi
    Wang, Wansheng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [8] Efficient pricing of options in jump-diffusion models: Novel implicit-explicit methods for numerical valuation
    Maurya, Vikas
    Singh, Ankit
    Yadav, Vivek S.
    Rajpoot, Manoj K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 202 - 225
  • [9] SECOND-ORDER FINITE DIFFERENCE METHOD FOR OPTION PRICING UNDER JUMP-DIFFUSION MODELS
    Kwon, Yonghoon
    Lee, Younhee
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2598 - 2617
  • [10] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344