Optimal Designs for Antoine's Equation: Compound Criteria and Multi-Objective Designs via Genetic Algorithms

被引:0
|
作者
de la Calle-arroyo, Carlos [1 ,2 ]
Gonzalez-Fernandez, Miguel A. [3 ]
Rodriguez-Aragon, Licesio J. [1 ]
机构
[1] Univ Castilla La Mancha, Escuela Ingn Ind & Aerosp Toledo, Inst Matemat Aplicada Ciencia & Ingn, E-45071 Toledo, Spain
[2] Univ Navarra, Inst Ciencia Datos Inteligencia Artificial DATAI, E-31009 Pamplona, Spain
[3] Univ Oviedo, Dept Informat, E-33204 Gijon, Spain
关键词
D-optimal design; I-optimal design; compound designs; multi-objective designs; genetic algorithm; VAPOR-PRESSURE; MEMETIC ALGORITHM; OPTIMIZATION; MINIMIZATION; EQUIVALENCE; MINIMAX; MODELS;
D O I
10.3390/math11030693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Antoine's Equation is commonly used to explain the relationship between vapour pressure and temperature for substances of industrial interest. This paper sets out a combined strategy to obtain optimal designs for the Antoine Equation for D- and I-optimisation criteria and different variance structures for the response. Optimal designs strongly depend not only on the criterion but also on the response's variance, and their efficiency can be strongly affected by a lack of foresight in this selection. Our approach determines compound and multi-objective designs for both criteria and variance structures using a genetic algorithm. This strategy provides a backup for the experimenter providing high efficiencies under both assumptions and for both criteria. One of the conclusions of this work is that the differences produced by using the compound design strategy versus the multi-objective one are very small.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Multi-objective Genetic Algorithms for grouping problems
    Emin Erkan Korkmaz
    [J]. Applied Intelligence, 2010, 33 : 179 - 192
  • [32] Multi-objective Genetic Algorithms for grouping problems
    Korkmaz, Emin Erkan
    [J]. APPLIED INTELLIGENCE, 2010, 33 (02) : 179 - 192
  • [33] Predictive prosthetic socket design: part 2—generating person-specific candidate designs using multi-objective genetic algorithms
    J. W. Steer
    P. A. Grudniewski
    M. Browne
    P. R. Worsley
    A. J. Sobey
    A. S. Dickinson
    [J]. Biomechanics and Modeling in Mechanobiology, 2020, 19 : 1347 - 1360
  • [34] Optimal Allocation of FACTS Devices by Using Multi-Objective Optimal Power Flow and Genetic Algorithms
    Ippolito, Lucio
    La Cortiglia, Antonio
    Petrocelli, Michele
    [J]. INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2006, 7 (02): : 1 - 19
  • [35] Multi-objective calibration of Tank model using multiple genetic algorithms and stopping criteria
    Gutierrez, Juan Carlos Ticona
    Caballero, Cassia Brocca
    Vasconcellos, Sofia Melo
    Vanelli, Franciele Maria
    Bravo, Juan Martin
    [J]. RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2022, 27
  • [36] Multi-objective optimization of aeroengine PID control based on multi-objective genetic algorithms
    Li, Yue
    Sun, Jian-Guo
    [J]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2008, 23 (01): : 174 - 178
  • [37] Optimal multi-criteria designs for Fourier regression models
    Shi, P
    Fang, KT
    Tsai, CL
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 96 (02) : 387 - 401
  • [38] Multi-objective optimisation of micromixer design using genetic algorithms and multi-criteria decision-making algorithms
    Cunegatto, Eduardo Henrique Taube
    Zinani, Flavia Schwarz Franceschini
    Rigo, Sandro Jose
    [J]. INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2024, 7 (03)
  • [39] Multi-objective optimization applied to lattice joist precast slab designs
    de Oliveira Campos C.M.
    de Gois Santos D.
    Almeida L.S.
    de Araujo Andrade N.F.
    [J]. Asian Journal of Civil Engineering, 2023, 24 (6) : 1621 - 1638
  • [40] A Comparison of Multi-Objective Optimisation of Two Wind Turbine Controller Designs
    Yu, W.
    Engels, W. P.
    Stock-Williams, C. F. W.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618