Optimal Designs for Antoine's Equation: Compound Criteria and Multi-Objective Designs via Genetic Algorithms

被引:0
|
作者
de la Calle-arroyo, Carlos [1 ,2 ]
Gonzalez-Fernandez, Miguel A. [3 ]
Rodriguez-Aragon, Licesio J. [1 ]
机构
[1] Univ Castilla La Mancha, Escuela Ingn Ind & Aerosp Toledo, Inst Matemat Aplicada Ciencia & Ingn, E-45071 Toledo, Spain
[2] Univ Navarra, Inst Ciencia Datos Inteligencia Artificial DATAI, E-31009 Pamplona, Spain
[3] Univ Oviedo, Dept Informat, E-33204 Gijon, Spain
关键词
D-optimal design; I-optimal design; compound designs; multi-objective designs; genetic algorithm; VAPOR-PRESSURE; MEMETIC ALGORITHM; OPTIMIZATION; MINIMIZATION; EQUIVALENCE; MINIMAX; MODELS;
D O I
10.3390/math11030693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Antoine's Equation is commonly used to explain the relationship between vapour pressure and temperature for substances of industrial interest. This paper sets out a combined strategy to obtain optimal designs for the Antoine Equation for D- and I-optimisation criteria and different variance structures for the response. Optimal designs strongly depend not only on the criterion but also on the response's variance, and their efficiency can be strongly affected by a lack of foresight in this selection. Our approach determines compound and multi-objective designs for both criteria and variance structures using a genetic algorithm. This strategy provides a backup for the experimenter providing high efficiencies under both assumptions and for both criteria. One of the conclusions of this work is that the differences produced by using the compound design strategy versus the multi-objective one are very small.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Optimal designs for Antoine Equation
    De La Calle-Arroyo, Carlos
    Lopez-Fidalgo, Jesus
    Rodriguez-Aragon, Licesio J.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 214
  • [2] Designing optimal degradation tests via multi-objective genetic algorithms
    Marseguerra, M
    Zio, E
    Cipollone, M
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2003, 79 (01) : 87 - 94
  • [3] A Hybridized Vector Optimal Algorithm for Multi-Objective Optimal Designs of Electromagnetic Devices
    Hu, Guanzhong
    Yang, Shiyou
    Li, Yuling
    Khan, Shafi Ullah
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [4] E(s2)-optimal and minimax-optimal cyclic supersaturated designs via multi-objective simulated annealing
    Koukouvinos, Christos
    Mylona, Kalliopi
    Simos, Dimitris E.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (06) : 1639 - 1646
  • [5] Optimal reliability/availability of uncertain systems via multi-objective genetic algorithms
    Marseguerra, M
    Zio, E
    Podofillini, L
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2004, 53 (03) : 424 - 434
  • [6] Generating Robust Optimal Mixture Designs Due to Missing Observation Using a Multi-Objective Genetic Algorithm
    Limmun, Wanida
    Chomtee, Boonorm
    Borkowski, John J.
    [J]. MATHEMATICS, 2023, 11 (16)
  • [7] Dataset Distillation via Multi-objective Genetic Algorithms
    Ungureanu, Robert-Mihail
    [J]. 2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 154 - 161
  • [8] Multi-objective optimal experimental designs for event-related fMRI studies
    Kao, Ming-Hung
    Mandal, Abhyuday
    Lazar, Nicole
    Stufken, John
    [J]. NEUROIMAGE, 2009, 44 (03) : 849 - 856
  • [9] Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB
    Kao, Ming-Hung
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2009, 30 (11): : 1 - 13
  • [10] Feature Selection via Pareto Multi-objective Genetic Algorithms
    Spolaor, Newton
    Lorena, Ana Carolina
    Lee, Huei Diana
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (9-10) : 764 - 791