Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries

被引:15
|
作者
Zhang, Dengfeng [1 ]
Li, Weichen [2 ]
Han, Xiaodong [3 ]
Lu, Baochun [2 ]
Zhang, Quanling [1 ]
Bo, Cuimei [1 ]
机构
[1] Nanjing Tech Univ, Inst Intelligent Mfg, Xinmofan Rd, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mech Engn, Xiaolingwei Ave, Nanjing, Peoples R China
[3] China Acad Space Technol, Inst Telecommun & Nav Satellites, Youyi Rd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
State; -of; -health; Evolving Elman neural network; Satellite lithium -ion batteries; Time series of equal discharging voltage; difference; In -orbit operation; PREDICTION; MANAGEMENT;
D O I
10.1016/j.est.2022.106571
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid development of aerospace industry, accurate and timely state-of-health (SOH) estimation by in -orbit measurable parameters is critical for the safe and reliable operation of satellite lithium-ion batteries. In this paper, a novel SOH estimation strategy is proposed based on the k-means clustering analysis (KMCA) and the evolving Elman neural network (EENN) by using the in-orbit discharging voltage data. The time series of equal discharging voltage difference (TSEDVD) is firstly developed as the feature to describe the capacity degradation in each charge-and-discharge cycle. Then, the KMCA is used offline to rank the capacity fading of lithium-ion battery into different health levels by virtue of the TSEDVD feature derived from the historical dataset throughout the battery lifecycle. Furthermore, a set of EENN models are constructed offline corresponding to the health levels and employed in estimating the SOH value online, where the improved evolving algorithm combining the genetic and simulated annealing algorithms is proposed to optimize the initial weights and thresholds in order to get the accurate estimation results. For the in-orbit application, the SOH value can be easily estimated online only via the monitored voltage signal exciting the corresponding EENN. The experimental results using the datasets from the NASA Ames Prognostics Center and the real GEO communication satellite demonstrate the validity of the proposed approach. It is feasible for the in-orbit SOH estimation of satellite lithium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] State-of-health estimation for lithium-ion batteries based on Kullback-Leibler divergence and a retentive network☆
    Chen, Guanxu
    Yang, Fangfang
    Peng, Weiwen
    Fan, Yuqian
    Lyu, Ximin
    APPLIED ENERGY, 2024, 376
  • [42] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)
  • [43] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [44] Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
    Tan, Xiaojun
    Tan, Yuqing
    Zhan, Di
    Yu, Ze
    Fan, Yuqian
    Qiu, Jianzhi
    Li, Jun
    IEEE Access, 2020, 8 : 56811 - 56822
  • [45] A voltage reconstruction model based on partial charging curve for state-of-health estimation of lithium-ion batteries
    Yang, Sijia
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Gao, Yang
    Zhang, Linjing
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [46] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [47] A Temporal Fusion Memory Network-Based Method for State-of-Health Estimation of Lithium-Ion Batteries
    Chen, Kang
    Wang, Dandan
    Guo, Wenwen
    BATTERIES-BASEL, 2024, 10 (08):
  • [48] Degradation mechanism analysis and State-of-Health estimation for lithium-ion batteries based on distribution of relaxation times
    Zhang, Qi
    Wang, Dafang
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Gismero, Alejandro
    Yang, Bowen
    Journal of Energy Storage, 2022, 55
  • [49] Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
    Shu, Xing
    Shen, Shiquan
    Shen, Jiangwei
    Zhang, Yuanjian
    Li, Guang
    Chen, Zheng
    Liu, Yonggang
    STAR PROTOCOLS, 2022, 3 (02):
  • [50] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543