Molecular-Dynamics Analysis of the Mechanical Behavior of Plasma-Facing Tungsten

被引:3
|
作者
Weerasinghe, Asanka [1 ]
Martinez, Enrique [2 ,3 ]
Wirth, Brian D. [4 ,5 ]
Maroudas, Dimitrios [1 ]
机构
[1] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
[2] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA
[3] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[4] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
plasma-facing materials; plasma-exposed tungsten; mechanical behavior; helium implantation; molecular-dynamics simulation; HELIUM-IMPLANTED TUNGSTEN; THERMAL-CONDUCTIVITY; ELASTIC PROPERTIES; MODEL; DEFORMATION; SIMULATIONS; PRESSURE; MODULUS; ISSUES;
D O I
10.1021/acsami.2c20795
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a systematic computational analysis of the mechanical behavior of plasma-facing component (PFC) tungsten focusing on the impact of void and helium (He) bubble defects on the mechanical response beyond the elastic regime. Specifically, we explore the effects of porosity and He atomic fraction on the mechanical properties and structural response of PFC tungsten, at varying temperature and bubble size. We find that the Young modulus of defective tungsten undergoes substantial softening that follows an exponential scaling relation as a function of matrix porosity and He atomic content. Beyond the elastic regime, our high strain rate simulations reveal that the presence of nanoscale spherical defects (empty voids and He bubbles) reduces the yield strength of tungsten in a monotonically decreasing fashion, obeying an exponential scaling relation as a function of tungsten matrix porosity and He concentration. Our detailed analysis of the structural response of PFC tungsten near the yield point reveals that yielding is initiated by emission of dislocation loops from bubble/matrix interfaces, mainly 1/2(111) shear loops, followed by gliding and growth of these loops and reactions to form (100) dislocations. Furthermore, dislocation gliding on the (111){211} twin systems nucleates 1/6(111) twin regions in the tungsten matrix. These dynamical processes reduce the stress in the matrix substantially. Subsequent dislocation interactions and depletion of the twin phases via nucleation and propagation of detwinning partials lead the tungsten matrix to a next deformation stage characterized by stress increase during applied straining. Our structural analysis reveals that the depletion of twin boundaries (areal defects) is strongly impacted by the density of He bubbles at higher porosities. After the initial stress relief upon yielding, increase in the dislocation density in conjunction with decrease in the areal defect density facilitates the initiation of dislocation-driven deformation mechanisms in the PFC crystal.
引用
收藏
页码:8709 / 8722
页数:14
相关论文
共 50 条
  • [31] Topology optimization of tungsten/copper structures for plasma-facing component applications
    Curzadd, Bailey
    von Mueller, Alexander
    Neu, Rudolf
    von Toussaint, Udo
    NUCLEAR FUSION, 2019, 59 (08)
  • [32] Research status of tungsten-based plasma-facing materials: A review
    Luo, Chunyang
    Xu, Liujie
    Zong, Le
    Shen, Huahai
    Wei, Shizhong
    FUSION ENGINEERING AND DESIGN, 2023, 190
  • [33] Progress and Challenges of Additive Manufacturing of Tungsten and Alloys as Plasma-Facing Materials
    Howard, Logan
    Parker, Gabriel D.
    Yu, Xiao-Ying
    MATERIALS, 2024, 17 (09)
  • [34] Silicon Carbide as a tritium permeation barrier in tungsten plasma-facing components
    Wright, G. M.
    Durrett, M. G.
    Hoover, K. W.
    Kesler, L. A.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 458 : 272 - 274
  • [35] Effects of surface anisotropy on the surface morphological response of plasma-facing tungsten
    Patel, Omeet N.
    Dasgupta, Dwaipayan
    Weerasinghe, Asanka
    Wirth, Brian D.
    Maroudas, Dimitrios
    ACTA MATERIALIA, 2024, 279
  • [36] Hole formation effect on surface morphological response of plasma-facing tungsten
    Chen, Chao-Shou
    Dasgupta, Dwaipayan
    Wirth, Brian D.
    Maroudas, Dimitrios
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (19)
  • [37] Helium flux effects on bubble growth and surface morphology in plasma-facing tungsten from large-scale molecular dynamics simulations
    Hammond K.D.
    Naeger I.V.
    Widanagamaachchi W.
    Lo L.-T.
    Maroudas D.
    Wirth B.D.
    Nuclear Fusion, 2019, 59 (06):
  • [38] Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces
    Oberkofler, M.
    Meisl, G.
    Hakola, A.
    Drenik, A.
    Alegre, D.
    Brezinsek, S.
    Craven, R.
    Dittmar, T.
    Keenan, T.
    Romanelli, S. G.
    Smith, R.
    Douai, D.
    Herrmann, A.
    Krieger, K.
    Kruezi, U.
    Liang, G.
    Linsmeier, Ch
    Mozetic, M.
    Rohde, V.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    PHYSICA SCRIPTA, 2016, T167
  • [39] Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles
    Tan, Xiao-Yue
    Luo, Lai-Ma
    Lu, Ze-Long
    Luo, Guang-Nan
    Zan, Xiang
    Zan, Ji-Gui
    Wu, Yu-Cheng
    POWDER TECHNOLOGY, 2015, 269 : 437 - 442
  • [40] Progress in additive manufacturing of pure tungsten for plasma-facing component applications
    Mueller, A. V.
    Dorow-Gerspach, D.
    Balden, M.
    Binder, M.
    Buschmann, B.
    Curzadd, B.
    Loewenhoff, T.
    Neu, R.
    Schlick, G.
    You, J. H.
    JOURNAL OF NUCLEAR MATERIALS, 2022, 566