A data-driven machine learning approach for yaw control applications of wind farms

被引:2
|
作者
Santoni, Christian [1 ]
Zhang, Zexia [1 ]
Sotiropoulos, Fotis [2 ]
Khosronejad, Ali [1 ]
机构
[1] SUNY Stony Brook, Dept Civil Engn, Stony Brook, NY 11794 USA
[2] Virginia Commonwealth Univ, Mech & Nucl Engn, Richmond, VA 23284 USA
关键词
Wind energy; Machine learning; Yaw control; Large eddy simulations; Convolutional neural networks; TURBINE WAKES; CURLED WAKE; MODEL; SCALE;
D O I
10.1016/j.taml.2023.100471
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kinetic energy fields in the wake of wind turbines for yaw control applications. The model consists of an auto-encoder convolutional neural network (ACNN) trained to extract the features of turbine wakes using instantaneous data from large-eddy simulation (LES). The proposed framework is demonstrated by applying it to the Sandia National Laboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines. LES of this site is performed for different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN. It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angle and wind speed that were not part of the training process. Specifically, the ACNN is shown to reproduce the wake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately. Compared to the brute-force LES, the ACNN developed herein is shown to reduce the overall computational cost required to obtain the steady state first and second-order statistics of the wind farm by about 85%.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Data-driven and adaptive control applications to a wind turbine benchmark model
    Simani, Silvio
    Castaldi, Paolo
    CONTROL ENGINEERING PRACTICE, 2013, 21 (12) : 1678 - 1693
  • [32] Data-driven machine learning for alloy research: Recent applications and prospects
    Gao, Xueyun
    Wang, Haiyan
    Tan, Huijie
    Xing, Lei
    Hu, Zhiyu
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [33] Learning Data-Driven PCHD Models for Control Engineering Applications *
    Junker, Annika
    Timmermann, Julia
    Traechtler, Ansgar
    IFAC PAPERSONLINE, 2022, 55 (12): : 389 - 394
  • [34] Data-driven wind turbine wake modeling via probabilistic machine learning
    Renganathan, S. Ashwin
    Maulik, Romit
    Letizia, Stefano
    Iungo, Giacomo Valerio
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 6171 - 6186
  • [35] Data-driven wind turbine wake modeling via probabilistic machine learning
    S. Ashwin Renganathan
    Romit Maulik
    Stefano Letizia
    Giacomo Valerio Iungo
    Neural Computing and Applications, 2022, 34 : 6171 - 6186
  • [36] Data-driven model-free adaptive damping control with unknown control direction for wind farms
    Shi, Xingyu
    Cao, Yijia
    Li, Yong
    Ma, Junjie
    Shahidehpour, Mohammad
    Wu, Xi
    Li, Zhiyi
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 123
  • [37] Data-Driven Approach for Wind Farm Control: Toward an Alternative to FLORIS
    Kim, Minjeong
    Park, Sungsu
    IEEE ACCESS, 2024, 12 : 13327 - 13339
  • [38] A data-driven machine learning approach for discovering potent LasR inhibitors
    Koh, Christabel Ming Ming
    Ping, Lilian Siaw Yung
    Xuan, Christopher Ha Heng
    Theng, Lau Bee
    San, Hwang Siaw
    Palombo, Enzo A.
    Wezen, Xavier Chee
    BIOENGINEERED, 2023, 14 (01) : 2243416
  • [39] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    Dinh, An
    Miertschin, Stacey
    Young, Amber
    Mohanty, Somya D.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [40] WeChat Toxic Article Detection: A Data-Driven Machine Learning Approach
    Weng, Yunpeng
    Wu, Muhong
    Chen, Xu
    Wu, Qiong
    He, Lingnan
    Chen, Liang
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 916 - 921